Line bundles on complete flag varieties are independent of central isogeny class
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Let k& be an algebraically closed field of characteristic 0. By an algebraic variety over k, we mean any
quasi-projective variety over k.

Proposition 0.1. Let f: X — Y be a morphism of smooth algebraic varieties over k. Then f is bijective
if and only if it is an isomorphism.

Proof. Observe that a smooth quasi-projective variety over k is normal, and see [[le]. |

Lemma 0.2. Let ¢ : G — G’ be a surjective morphism of connected linear algebraic groups over k. If H is
a Borel subgroup (resp. mazimal torus, mazimal connected unipotent subgroup) in G, then ¢(H) is a Borel
subgroup (resp. maximal torus, mazimal connected unipotent subgroup) in G'.

Proof. See [ , 821.3, Cor. C]. |

Theorem 0.3. Let G be a connected reductive group over k, and let B be a Borel subgroup of G. The
set of unipotent elements B,, equals the commutator subgroup {B, B} of B, and B, is a closed, connected,
nilpotent, normal subgroup of B. Moreover, B/B,, is a torus. Finally, if T is any mazimal torus of G sitting
in B, then B = TB,, (this is a semidirect product), and the restriction of the projection B — B/B, to T
defines an isomorphism T ~ B/B,,.

Proof. See | , Cor. 6.3.3 and Thm. 6.3.5] and | , Thm. 10.6]. O

Let G be a connected semisimple linear algebraic group over k, and suppose T is a maximal torus in
G. Let B be a Borel subgroup of G containing 7. If X is a character of T, then A\ determines a one-
dimensional irreducible representation Vy = (vy) of T. By Theorem 0.3, B/B, is a torus, and there is
sequence of homomorphisms B — B/B, — T, where the second homomorphism is an isomorphism. Thus,
every character of T lifts to a character A\ of B. The group B acts on V) by b-vy = A(b)"lv, for all b € B.

Theorem 0.4. Let A be a character of T, and, hence, of B. The set
L) :=G xpVy=GxW/((g,v) ~ (gb,b~*-v))
is an algebraic variety, and it is the total space of a line bundle over the complete flag variety G/B. The

morphism w: L(A) — G/B defining this line bundle sends (g,v)B — gB for all (g,v)B € L()).

Proof. See | , §8.5]. O

Remark 0.5. There is a natural G-action on L£(\) given by h- (g,v) = (hg,v) for all h,g € G, v € V). The
line bundle 7 : L(\) — G/B is G-equivariant: w(h - (g,v)) = hn(g,v) for all g,h € G, v € V). The line
bundle L£(\) is a homogeneous line bundle.

Remark 0.6. Let B be the set of Borel subgroups in G. By the discussion in | , §23.3], the map
xB — xBx~! defines a bijection G/B — B. Under the induced variety structure, we call B the variety of
Borel subgroups of G.

Let G and G be connected semisimple linear algebraic groups over k, with root data ¥ = (X, A, XV, AY)
and U1 = (X1, Ay, 2Y, AY), and Weyl groups W(¥) and W (¥), respectively.

Definition 0.7. (See | , Ch. 1].) A central isogeny of root data f : ¥ — ¥y is an injective group
homomorphism f: A — A; with finite cokernel such that f induces a bijection f|s: ¥ — X1, satisfying

F(fla))=a’, aex
Remark 0.8. A central isogeny of root data f: ¥ — W¥; induces an isomorphism of the Weyl groups,
W(\I/) — W(\I/l), Sa F? Sf(a); « S
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Remark 0.9. Let {a;}? ; be a set of simple roots in ¥, and let {\;}; be a Z-basis of A. If f: ¥ — ¥, is

i=1
a central isogeny, then {f(«;)}™ , is a set of simple roots in f(X) = 31, and {f(\;)}; is a Z-basis of f(A).
Definition 0.10. (See [ , Ch. 1].) A central isogeny ¢ : G1 — G is a surjective morphism whose kernel
is finite and central in Gy.

Proposition 0.11. Let ¢ : G1 — G be an central isogeny, mapping Ty to T. Then ¢ induces a central
isogeny of root data f : U — Uy such that f(A\) = Ao |y, for all A € A.

Proof. See | , Ch. 1]. O

Let G°¢ be the connected semisimple simply-connected linear algebraic group over k with the same Dynkin
type as G, and let WS¢ = (3¢, A% (259)V, (A%¢)Y) be its root datum. By [ , Exercises 10.1.4(1)], there
is a central isogeny ¢ : G°° — G. The group G*¢ is called the simply-connected cover of G. If B is a
Borel subgroup of G¢ with maximal unipotent connected subgroup B:¢, then, by Lemma 0.2, B := ¢(B*)

is a Borel subgroup in G with maximal unipotent connected subgroup B, := ¢(B¢). By Theorem 0.3,
we can view B /B¢ and B/B, as maximal tori in G and G, respectively. Set T°¢ := B*°/B5° and

T := ¢(T5°) = B/B,. Let f : A — A®® be the injective homomorphism on character lattices induced by ¢. If
p: B — T and p*° : B — T"° are the canonical projections onto the quotients, then the following diagram
commutes:

Recall that we can lift a character of T5¢ (resp. T') to a character of B¢ (resp. B) by composing the character
on the right by p (resp. p). Given a character A of T, we have by Proposition 0.11 that A o ¢|pse = f(A).
Thus, Aopod|pgse = Ao@|psc0p®® = f(A)op®c. From now on, we will abuse notation and denote the character
Aop (resp. f(A)op*) of B (resp. B%) by A (resp. f(A)). Thus, Ao @|gse = f(N).

Let B (resp. B®¢) be the variety of Borel subgroups in G (resp. G*°). Following | , Prop. 11.20],
we show that there is an isomorphism of flag varieties G¢/B%¢ ~ G/B by showing that the induced map on
the variety of Borel subgroups ¢gsc : B — B is an isomorphism. Since ¢ is surjective, given zBz~! € B,
there is y € G*° such that ¢(y) = 2. Thus, ¢gs(yB*y~!) = ¢(y)p(B*)d(y)~! = xBx~!. To see that ¢psc
is injective, we note that, since the kernel of a central isogeny is central and central elements in G*¢ lie in
B*¢, we have

¢~ H(B) = B* ker ¢ = B*°.
Thus, ¢psc is a bijective morphism of smooth projective varieties over k, so, by Proposition 0.1, it is an

isomorphism. Since G*¢/B* ~ G/B as flag varieties, given a character A\* of T%°, there is a line bundle
L(A*) over G/B.

Lemma 0.12. If A\*¢ € A%, A € A, and \*¢ = f()\), then there is an isomorphism of line bundles L(A€) ~
L(X\) over G/B.
Proof. Let vy and wvyse be generators of the one-dimensional irreducible representations V) and Vysc of B
and B¢, respectively. Let ¢ : £L(A*¢) — L(A) be the morphism
a(g;vase) = (&(g),vx), g€ G™.
To see that g is well defined, we note that
q(gb, X*(b)urse) = (¢(gb), A*(b)ua)
~ (8(9): N(@(B) 1A (b)) = (6(9), M((B) ™ HA((B))vr) = (6(g), v).

The morphism ¢ is surjective because ¢ is surjective.

Now let p: L(A\) = L(N*°) be the map

p(ger)\) = (h’IU)\SC)7 g€ Ga
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where h is any element in ¢~!(g). This map is independent of the representative h. To see this, first recall
that ker(¢) is central and lies in B*°. For all ¢ € ker(¢), we have

(hyvyse) = (he, N¥(c)vrse) = (he, M(@(e))vase) = (he, vpse).

Therefore, it does not matter which element h € 7—!(g) we choose, and p is surjective. To see that p is
well-defined, we note that, for all b € B, there is b’ € ¢$~*(b) such that

p(gb, \(b)vy) = (hb', A(b)vpse)
~ (B A% (V) TEA(b)vrse) = (hy M@ () TEA(D)vase) = (B, vse).
It is straightforward to verify that p is a set-theoretic inverse to ¢q. In particular, ¢ is a bijective morphism of

algebraic varieties over k. Since G/B and G®®/B®¢ are smooth, the line bundles £(A) and £(A*¢) are smooth.
Now it follows from Proposition 0.1 that ¢ is an isomorphism of smooth algebraic varieties over k.

It is straightforward to verify that the following diagram commutes,

L) —L— L))

- [

G*/B* —— G/B

sC sC
Gs¢/B

where m and 7°¢ are projections onto the first factor, and ¢gsc/psc is the isomorphism of flag varieties
induced by ¢. It is also straightforward to verify that q|(¢GSC/BSC omse)—1(gB) and q*1|r1(93) are linear for all
gB € G/B. Therefore, ¢ is a morphism of line bundles. O
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