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Divided difference operators

Define R := Z[x1,...,Xn]. Let s; be the transposition in S, that swaps i

and i+ 1. This defines an action of S, on R, where s; swaps x; and Xj1.

Definition (Demazure 1973, 1974)

Consider the Z-linear operators on R, one foreachi=1,...,n—1:
f—si(f
o) = =5 pep.
Xiy1 — Xi

The 0; are called divided difference operators.
Forw =s;, o---sj reduced, define 9,, := 65,.1 0---0 as,k. The operator 9y,
does not depend on the choice of reduced expression for w.

X1X3 —S2(X1X3)  X1X3 — X1X2
02(x1x3) = =

= X1 € R.
X3 — X2 X3 — X2

University of Toronto Deforming the motivic Segre classes of Schuber May 1, 2025 2/33



S,-actions
Let A7 be the set of 01 sequences with k 1’s and n —k 0’s. The swap s;

acts on A7 by swapping the i-th and (i + 1)-th entries of a sequence.
Define the word w = 1K0" X,

The sequence 1001110 € A]. We have s3(1001110) = 0101110.

Consider the ring R:= PR=EPZlx1,...,xnl.
Ay Ay

The transposition s; acts on R by s,-((f;\);\e,\z) = (Si(f}\))s,()\)e/\g-

Consider (fi10, fio1, fo11) = (x1X2, X3, x1x§) € R, indexed by A3. Then

51(X1X2,X§,X1X§) = (51(X1X2).51(X1X§).Sl(XE)) = (X1X2,X2X‘3‘,X%)-
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GKM conditions and Schubert classes

Definition (Goresky-Kottwitz-MacPherson 1996)

An element (fy)xenp € R is called GKM if:

whenever A = (i,j)(A"), the difference fy — fy, is divisible by x; — x; in R.

I
N

The sequences (1,1,1) and (0,0, 0, (x; —x2)(x1 —x3)(X> —x3)) inR
indexed by /\% = {(fIOO: fo]_o, fOOl)} are GKM.

| A\

Definition (Schubert classes)

Hi>j:7\,-<7\,- Xi—xj, ifA=w;

Fix A7. Define in R, an element S, |y =
otherwise.

The other S, are defined by the rule S, 1) = 0w (Sw).
The S, are GKM and called Schubert classes.

— =T = = A
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Multiplying Schubert classes

Definition (Schubert basis)

The Z[x1, ..., X,]-subalgebra of R generated by {Sataeny is Hr(Gr(k, n)).
The S, form Z[x1, ..., xp]-basis for the subalgebra: the Schubert basis.

Let us run an example for A2. Recall the operator
B f—Sl(f)

a]_(f) . Xo — X1 .

We have
S10 =10, x2 — x1]; So1 = 01(S10) = [1,1].
Let us compute all products and express them in terms of the Sj:
S%o = (X2 —x1)S10; S10-So1 =S10; Sg1 = Sou.

The structure constants lie in IN[x> — x1].

Is there a combinatorial formula for the structure constants in S, basis? |
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Knutson-Tao puzzles

Consider the following puzzle pieces, equipped with a function from
{1,2,3,...2to Z[x1, X2, ...] called its fugacity.

QO
Q08¢
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Knutson-Tao puzzles

A Knutson-Tao puzzle is a triangle with side labels A, i, v in A} that is
tiled by the puzzle pieces.

The fugacity of a puzzle is the product of fugacities of its tiles. The
fugacity of a rhombus tile is x; — x;, where i is the i-th NE-to-SW diagonal,
and j is the j-th NW-to-SE diagonal in the puzzle.

:= sum of puzzle fugacities over all puzzles with A, 1, v boundary.

For A = 100 (left), . = 010 (right), v = 100 (bottom):

fug =(x1—x2)-1-1=x1—x>.
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Knutson-Tao puzzles

Theorem (Knutson-Tao 2003)
For any A, u € A7, the product Sy - Sy, is

SA-SH=ZASV.
v

Thus the structure constants lie in IN[x; — X2, X2 — X3, ..., Xn—1 — Xn].

Recall our computation in a previous example:
2 ) .2
510 = (X1 —x2)S10; S10-So1 =S10; Sp1 = So1.

We compute

D O Ay
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Positive formulas

What is a positive formula? I

Say | have a basis By, ..., B,, and the structure constants for this basis
live in IN. The structure constants are positive because IN is a monoid
and N N (=IN) = (0).

Definition (Knutson-Zinn-Justin 2021)

A positivity monoid is a monoid M such that MN (—M) = (0). If the
structure constants for a basis live in a positivity monoid, then the
structure constants are positive.

IN[x1 — X2, X2 — X3, ...,Xp_1 — Xp] is @ positivity monoid.

= . - = =

University of Toronto Deforming the motivic Segre classes of Schuber May 1, 2025 9/33



K-theory divided difference operator

Define R := Z[e®T™, ..., e™*]. Let s; be the transposition in S, that swaps
iand i+ 1. This defines an action of S, on R, where s; swaps €* and e*i+1,

Definition (Demazure 1973, 1974)
Consider the Z-linear operators on R, one foreachi=1,...,n—1:

_ f—emsi(f)

1 — eXi+1—Xi

0(f) : f €R.

The 0; are called divided difference operators.
For w =s;, o---s;, reduced, define 9, := 65,1 0-++0 as,k. The 0,, does not
depend on the choice of reduced expression for w.
v
X - exl_exzfxlsl(exl) - exl(l_eZ)(szxl) - exl(l—ex27xl)(l+e)(27x1)
01(e™) = 1—e2 ™ - 1—e2™%1 o 1-e27 S %

=g - - =
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K-theory GKM conditions

Define the ring R := @ R. Recall the action s;((fa)a) == (si(fa))s;(A)-
An

k

Definition (e.g., Knutson-Rosu, Cor. A.5, 2003)

An element (fy)aep € R is called GKM if:

whenever A = (i, j)(A’), we have f, — fy/ is divisible by 1 —e* % in R.

v

Definition (Schubert classes)

Fix A7. Define in R, an element

Hi>j:)\i<)\-(1 — X)), if A = w;
Sw|7\ = J .
otherwise.

The other S, are defined by the rule 5,1,y = 0w (Sw).
The S, are GKM and called Schubert classes.

= = = = = ety
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Multiplying Schubert classes

Definition (Schubert basis)

The Z[e*™, ... eT*]-subalgebra of R generated by {Salaenr is
K7(Gr(k, n)). The Sy form Z[e**, ..., e*n]-basis for the subalgebra: the
Schubert basis.

Theorem (Pechenik-Yong 2017, Wheeler-Zinn-Justin 2019)

Forany A, u € A, the product Sy - Sy, is

SA‘SH:ZﬂSV'
v

where the tiles and fugacities of puzzle pieces are now different. The
structure constants are “positive", in the sense: (—1)””_”)‘)_"’(”)&&
lies in the positivity monoid

NeXe™™ g2 @n™Xn1 1 e X 1 6 %2 1o Xn1]
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h-deformations of Hy classes

Define R := Z[x1, ..., Xn, h]. Define an action of S, on R, where s; swaps
x; and x;,1 and fixes h. Define the ring R := @)\GAZFraC(R).

Consider the Z-linear operators on R, one foreachi=1,...,n—1:

h —|—Xi_Xi+1_hS'

a,' = e
Xi— Xj+1 Xi — Xjt+1
The 9; will be called "cohomological Deligne-Lusztig operators".
ihein R Hi>j~)\'<)\» % if A= w;
Define in R, an element Sl == RS = X]
0, otherwise.

The other S, are defined by the rule S, 1) = 0w (Sw).
The S, are called Segre-Schwartz-MacPherson classes.

There is a positive puzzle formula for the structure constants for Sy in
terms of Knutson-Tao puzzles [Knutson-Zinn-Justin 2021].
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g-deformation of K+ classes

Define R := Z[e®™1, ..., e™*n q?]. Define an action of S,, on R, where s;
swaps €% and e*+1 and fixes g2. Define the ring R := ®aenpFrac(R).

Consider the Z-linear operators on R, one foreachi=1,...,n—1:

1— q2 1— quXi—Xi+1

= Si.
T eXiriX 1—eXi—Xis1

The 0; are called Deligne-Lusztig operators.

1— ot . _ i
Hi>j:}\,-<}\,- —1,q§exrva ifA = w;
0, otherwise.

The other S, are defined by the rule S, -1,y = 0w (Sw).
The S, are called motivic Segre classes.

Define in R, an element S, | =

There is a positive puzzle formula for the structure constants for S, in
terms of Knutson-Tao puzzles [Knutson-Zinn-Justin 2021].
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A note on Chern classes

The element 1 — e*i~*i+1 is the first equivariant Chern class (in K-theory)
of the homogeneous line bundle Ly,,, x, — G/B. Let's replace 1 — e* i1
by c1(Lx,,,—x) everywhere in the motivic Segre classes.

1_q2 + l_qz(l_cl(LX,‘—X,‘Jrl))

KT . 0; == .
' C1 (LXI—X,'+1) Cl(LXH_]_—X,‘) '

Cl(Lx,-—xj) . o .

Sw |)\ = Hi>j:}\i<}\l' 1_q2 (1_61 (Lxl-ij)) ! If 7\ - (U,

0, otherwise.

Swfl(w) = aW(Sw).

What if we replace ¢; by a Chern class in another cohomology theory? I

= =g = ey
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‘Connective’ K-theory

An algebraic oriented cohomology theory h* is a functor:
h*: {smooth algebraic varieties} — {graded, commutative, unital rings},

that satisfies ‘cohomology-type’ axioms.

Chow ring theory and K-theory are oriented cohomology theories.

There is an oriented cohomology theory called connective K-theory.
After a localization, the first equivariant Chern class in connective
K-theory sends Ly, _x to B~1(1 —eX~%i+1), where B is a free variable.

Let's replace everything with this new Chern class!
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Deforming the motivic Segre classes

The new operator and classes for connective K-theory (after localizing):
B(1-¢*) [ B(1-¢*)+q°(1— e

0j == ——— — i-
1—eXiti—X 1 — eXi—Xin1
17X . .
[1~; - ifA=w
i>jAN<Aj _ g2 2(1_5i— %)’ '
Swly = JAI<A B(1-q%)+q2(1—€e")

0, otherwise.

Sw—l(w) = aW(Sw)

Ow = 0;, o--- 00, is independent of the reduced expression w =s;, - --s;, :
1. a,-oa,-+1oa,-= a,-+1oa,-oa,-+1 fori=1,...,n—2.
2. a,-oaj = ajOa,'fOFa” |I—j| > 1.

Therefore, the classes S, are well-defined.

The 3 = 1 specialization recovers the motivic Segre classes 5§T.
The B = 0 ’limit’ recovers the homogenizations (h -+ 1)lensth(M i,
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The puzzle formula

gﬁ_l {}_1 K}_l 1{} —1 gi}o=1
{}Oﬂ(l;ﬁ 1& fﬁ(lyi_xqz) {} % 1@0 %
- _ o
{}oﬁ“ﬁ mﬁ(lhqzw lwoqowﬁe)
131:\}0:%1@) 1g}o=%11)e* i&}gzo(ﬁ)
-1 JLot o=t et gg-t o= 0
B6=1 RA=1 1B6=1 Wlo=1 A =1 10o=—9

Theorem (G. 2025+)

(qlength(x)s}\) . (qlength(u)su) — Zvﬁ (qlength(v)sv)
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Positivity

Define Q(B) := g* + B — q°B.

Consider the submonoid M of Frac(Z[p][e™, ..., e**, gq*1]), defined as
the set of sums of products of the factors overall 1 <i<j < n:

== Xj—Xj B(1—g?) _ 1% i
q Q(B) e B(1—q?)+q2(1—e% ) B(1—q?)+q?(1—€5 %)’

Then M is a positivity monoid.

As the structure constants in the Sj basis live in M, it is in this sense that
our puzzle formula is positive.

What are the deformed classes 5,7 I
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Theorem (Localization package)

Let X be a smooth complex algebraic variety that has an algebraic action
of a complex torus T := (C*)", and assume this action has finitely many
fixed points F. The natural ring homomorphisms

Hr(X) = @ Hr(pt) ~ P Zixi, ..., xal;

feF feF
Kr(X) = DKr(pt) = P Zle™™, ..., e*),
feF feF

induced by the inclusions {fixed point} < X, are injective.

The Grassmannian Gr(k, n) is the smooth projective algebraic variety
consisting of k-dimensional subspaces of C". It has an algebraic action of
an n-dimensional torus T := (C*)". The cotangent bundle T*(Gr(k, n))
has an action of T x C*, where T acts on the base Gr(k, n) and C* scales
the cotangent fibres.

v

= - - =
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Recall the GKM conditions

An element (fy)acap € 697‘6/\2 Z[x1,...,Xn, 1l is called GKM if:
whenever A = (i,j)(A'), the difference f, — fys is divisible by x; — x;.

A GKM class (f\)aeap can be identified with a class in Hr, ¢~ (T*Gr(k, n)).

An element (fA)xenp € Drcap Krxcx (Pt) = Brcap Z [erx ... eTXn g?]

is called GKM if:

whenever A = (i,j)(A"), we have fy —f/ is divisible by 1 —e~%.

A GKM class (fy)xeap can be identified with a class in Krycx (T*Gr(k, n)).

v

SSM and motivic Segre classes are quotients of classes that

satisfy GKM called ’stable classes’.
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What are the deformed classes?

_ B(1—g*) | B(1—g*)+qg?(1—e¥i ¥i+1)
Recall the operator 0; := ;= &= + 1 oKX S
Clear the denominators in the S to define classes Sty :

I

Sty = [T B1—a*)+a*(1—€)) | Swi Sty1(w) = w(Stw).

i>j:wi<wj

The elements St satisfy:

whenever A = (i, j)(A’), the difference St) — Sty is divisible by C1(Lx—x;)-

Question (WORK IN PROGRESS)

Does the previous lemma imply that the St come from geometric ‘stable
classes’ in the connective K-ring of T*(Gr(k, n))?
Answer: Almost surely yes— work in progress
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Rational function representatives for deformed classes

Ay 170 0/\1 0/
[AVARVER 0 0 0
Mgt WV B1—gq?)e*  qQiBI(1—e™)
ﬁ[ﬂ 97\1 . el ez _ 1\._..-’ 0 OFI—qfe” QIBl—gle™ O
y & JK -— 0\ . 0 q[]—u'\] I?!:]—q:] O
\Yi Q:ﬁ'l—q-t"\ Qfﬁ]—qzu"'
on/ 0 0 0 :
A
X1 1
- 1
S;\ = w
1
Xn 1
Z1 1z n
1T 1 1 1

"Sum over all possible grids, and add the fugacities together"
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Rational function representatives for deformed classes

y [\ 1
s o (L D
e I IR T{o ey
1 1
y 1 [\
s _ T _q0-xy/z)  BU-d?)
o= 1 Y. T QB —qla/z) QB — lxi/z)
1ZI 1._

The rational functions Sy represent the homogenizations g'e8th(A) s, of
the connective elements S, defined earlier.
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Rational function representatives for deformed classes

The following diagram equals the evaluation x; := z;-1(;) in Sx:

S?\luz o
A
w
S z3z = z3
Solor=4 =1 Sor= 4 4 =0
of 1 of 1
. ¥ T BI-¢) s NAT _ _dli—z/z)
o= Ay Q) - aF(z/z) TN QB —q¥(za/z)
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Proof of puzzle rule: rational function R-matrix

The rational functions S, can also be defined using the following matrix

entries, with x = (1 —e?) and y = B(1 —q2) +q%(1—el).

Ay

A2

Rin (B xa) ><

11
1,/0
110
oy
0\/0
0\/10
100,1
10,/0
100,/10

11\
1

0
0
0
0
0
0
0
0

110
0

(1-gq)(1—Bxa)

Ya

0

gxa
Ya

e

0
0
0
0
0

100 oA

0 0
QUBIgxa
0 Ua
1—at
Ua 0
1—a?
O ua
0 0
0 0
20
0 0
0 0

0,0

0/\10

QIBlgxa

ya

0

[1—q®)(1—Bxa)

Ya
0
0
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Proof of puzzle rule: puzzle R-matrix

An 2

Rqr{ﬁ-x?\] = >< =

AT 1A0 TAT0 0T 00 0/\10 10/\1 10/\0 10/\10

"1 1 0 0 o 0 ”-‘4:% 0 0 0

1,/0 0 0 0 w0 W 0 0 0 0

/10 0 0 0 0 L 0 1 0 0

0\ /1 0 1 0 o0 0 ! 0 0 eNa-i-px)
0\/0 0 0 0 0 1 0 % 0 0

0\/10 0 0 0 0 0 0 0 T 0

100,11 0 0 % 0 0 0 0 0 0

10\,/0 1;_3 0 0 0 0 1 0 0 0

VAT QR 0o 0 0 0 0 Q(p)
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Proof of the puzzle rule

The following diagram equals 010 101,

LyyeoenLy2€{0,1,10]
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Proof of the puzzle rule

The following diagram computes Oomlo S1010l0101.

o O Y y 0,0

0O o0 |\ 1
Removing 1010 in the center, it computes )., Ooﬂ)lo Sylo101-
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Proof of the puzzle rule

The following diagram computes Sgo11l0101 - S1010l0101 (I @am sweeping

details under the rug!) Note: red and green matrices “equal" blue matrix
(almost).

Qal I t O

Must prove that this diagram equals previous one! Equality of formula at
all restrictions implies equality of classes.
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Proof of the puzzle rule

The following hold!
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Proof of the puzzle rule
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