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Divided difference operators

Define R := Z[x1, . . . , xn]. Let si be the transposition in Sn that swaps i

and i+ 1. This defines an action of Sn on R, where si swaps xi and xi+1.

Definition (Demazure 1973, 1974)

Consider the Z-linear operators on R, one for each i = 1, . . . ,n− 1:

∂i(f) :=
f − si(f)

xi+1 − xi
, f ∈ R.

The ∂i are called divided difference operators.

For w = si1 ◦ · · · sik reduced, define ∂w := ∂si1 ◦ · · · ◦ ∂sik . The operator ∂w
does not depend on the choice of reduced expression for w.

Example

∂2(x1x3) =
x1x3 − s2(x1x3)

x3 − x2
=

x1x3 − x1x2

x3 − x2
= x1 ∈ R.
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Sn-actions

Let Λn
k be the set of 01 sequences with k 1’s and n− k 0’s. The swap si

acts on Λn
k by swapping the i-th and (i+ 1)-th entries of a sequence.

Define the word ω := 1k0n−k.

Example

The sequence 1001110 ∈ Λ7
4. We have s2(1001110) = 0101110.

Consider the ring R̃ :=
⊕
Λn

k

R =
⊕
Λn

k

Z[x1, . . . , xn].

The transposition si acts on R̃ by si((fλ)λ∈Λn
k
) := (si(fλ))si(λ)∈Λn

k
.

Example

Consider (f110, f101, f011) = (x1x2, x2
2, x1x4

3) ∈ R̃, indexed by Λ3
2. Then

s1(x1x2, x
2
2, x1x

4
3) = (s1(x1x2), s1(x1x

4
3), s1(x

2
2)) = (x1x2, x2x

4
3, x

2
1).

University of Toronto Deforming the motivic Segre classes of Schubert cells in the Grassmannian (Raj Gandhi)May 1, 2025 3 / 33



GKM conditions and Schubert classes

Definition (Goresky-Kottwitz-MacPherson 1996)

An element (fλ)λ∈Λn
k
∈ R̃ is called GKM if:

whenever λ = (i, j)(λ ′), the difference fλ − fλ ′ is divisible by xi − xj in R.

Example

The sequences (1,1,1) and (0,0,0, (x1 − x2)(x1 − x3)(x2 − x3)) in R̃

indexed by Λ3
1 = {(f100, f010, f001)} are GKM.

Definition (Schubert classes)

Fix Λn
k. Define in R̃, an element Sω|λ :=

{∏
i>j:λi<λj

xi − xj, if λ = ω;

0, otherwise.

The other Sλ are defined by the rule Sw−1(ω) := ∂w(Sω).

The Sλ are GKM and called Schubert classes.
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Multiplying Schubert classes

Definition (Schubert basis)

The Z[x1, . . . , xn]-subalgebra of R̃ generated by {Sλ}λ∈Λn
k

is HT(Gr(k,n)).
The Sλ form Z[x1, . . . , xn]-basis for the subalgebra: the Schubert basis.

Let us run an example for Λ2
1. Recall the operator

∂1(f) :=
f − s1(f)

x2 − x1
.

We have

S10 = [0, x2 − x1] ; S01 = ∂1(S10) = [1,1] .

Let us compute all products and express them in terms of the Sλ:

S2
10 = (x2 − x1)S10; S10 · S01 = S10; S2

01 = S01.

The structure constants lie in N[x2 − x1].

Question

Is there a combinatorial formula for the structure constants in Sλ basis?
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Knutson-Tao puzzles

Consider the following puzzle pieces, equipped with a function from

{1,2,3, . . . }2 to Z[x1, x2, . . . ] called its fugacity.

0 0

00
=

1 1

11
=

0 1

01
=

1 10

110
=

10 0

100
=

0 0

110
= 1

10 0

11
=

1 1

100
=

1 10

00
= 1

1 0

10
= xj − xi.

0

00 =

1

11 =

1

100 =
0

110 =
10

01 = 1 (allow rotations)
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Knutson-Tao puzzles

A Knutson-Tao puzzle is a triangle with side labels λ,µ,ν in Λn
k that is

tiled by the puzzle pieces.

The fugacity of a puzzle is the product of fugacities of its tiles. The

fugacity of a rhombus tile is xi − xj, where i is the i-th NE-to-SW diagonal,

and j is the j-th NW-to-SE diagonal in the puzzle.

ν

µλ := sum of puzzle fugacities over all puzzles with λ,µ,ν boundary.

Example

For λ = 100 (left), µ = 010 (right), ν = 100 (bottom):

fug

00

110

00
0

10

00
0

11
1

= (x1 − x2) · 1 · 1 = x1 − x2.

University of Toronto Deforming the motivic Segre classes of Schubert cells in the Grassmannian (Raj Gandhi)May 1, 2025 7 / 33



Knutson-Tao puzzles

Theorem (Knutson-Tao 2003)

For any λ,µ ∈ Λn
k, the product Sλ · Sµ is

Sλ · Sµ =
∑
ν ν

µλ Sν.

Thus the structure constants lie in N[x1 − x2, x2 − x3, . . . , xn−1 − xn].

Recall our computation in a previous example:

S2
10 = (x1 − x2)S10; S10 · S01 = S10; S2

01 = S01.

We compute

10

00

0

11

1

= x1 − x2

00

110

0

11

1

= 1
01

11

1

00

0

= 1
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Positive formulas

Question

What is a positive formula?

Example

Say I have a basis B1, . . . ,Bn, and the structure constants for this basis

live in N. The structure constants are positive because N is a monoid

and N ∩ (−N) = (0).

Definition (Knutson–Zinn-Justin 2021)

A positivity monoid is a monoid M such that M∩ (−M) = (0). If the

structure constants for a basis live in a positivity monoid, then the

structure constants are positive.

Example

N[x1 − x2, x2 − x3, . . . , xn−1 − xn] is a positivity monoid.
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K-theory divided difference operator

Define R := Z[e±x1 , . . . , e±xn ]. Let si be the transposition in Sn that swaps

i and i+ 1. This defines an action of Sn on R, where si swaps exi and exi+1 .

Definition (Demazure 1973, 1974)

Consider the Z-linear operators on R, one for each i = 1, . . . ,n− 1:

∂i(f) :=
f − exi+1−xisi(f)

1− exi+1−xi
, f ∈ R.

The ∂i are called divided difference operators.

For w = si1 ◦ · · · sik reduced, define ∂w := ∂si1 ◦ · · · ◦ ∂sik . The ∂w does not

depend on the choice of reduced expression for w.

Example

∂1(e
x1) =

ex1−ex2−x1s1(ex1)
1−ex2−x1

=
ex1(1−e2x2−2x1)

1−ex2−x1
=

ex1(1−ex2−x1)(1+ex2−x1)
1−ex2−x1

∈ R.
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K-theory GKM conditions

Define the ring R̃ :=
⊕
Λn

k

R. Recall the action si((fλ)λ) := (si(fλ))si(λ).

Definition (e.g., Knutson-Roşu, Cor. A.5, 2003)

An element (fλ)λ∈Λn
k
∈ R̃ is called GKM if:

whenever λ = (i, j)(λ ′), we have fλ − fλ ′ is divisible by 1− exi−xj in R.

Definition (Schubert classes)

Fix Λn
k. Define in R̃, an element

Sω|λ :=

{∏
i>j:λi<λj

(1− exi−xj), if λ = ω;

0, otherwise.

The other Sλ are defined by the rule Sw−1(ω) := ∂w(Sω).

The Sλ are GKM and called Schubert classes.
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Multiplying Schubert classes

Definition (Schubert basis)

The Z[e±x1 , . . . , e±xn ]-subalgebra of R̃ generated by {Sλ}λ∈Λn
k

is

KT(Gr(k,n)). The Sλ form Z[e±x1 , . . . , e±n ]-basis for the subalgebra: the

Schubert basis.

Theorem (Pechenik-Yong 2017, Wheeler-Zinn-Justin 2019)

For any λ,µ ∈ Λn
k, the product Sλ · Sµ is

Sλ · Sµ =
∑
ν ν

µλ Sν,

where the tiles and fugacities of puzzle pieces are now different. The

structure constants are “positive", in the sense: (−1)ℓ(ν)−ℓ(λ)−ℓ(µ)
ν
µλ

lies in the positivity monoid

N[ex2−x1 , ex3−x2 , . . . , exn−xn−1 ,1− ex2−x1 ,1− ex3−x2 , . . . ,1− exn−xn−1 ].
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 h-deformations of HT classes

Define R := Z[x1, . . . , xn,  h]. Define an action of Sn on R, where si swaps

xi and xi+1 and fixes  h. Define the ring R̃ := ⊕λ∈Λn
k
Frac(R).

Definition

Consider the Z-linear operators on R, one for each i = 1, . . . ,n− 1:

∂i :=
 h

xi − xi+1
+
xi − xi+1 −  h

xi − xi+1
si.

The ∂i will be called "cohomological Deligne-Lusztig operators".

Define in R̃, an element Sω|λ :=


∏

i>j:λi<λj

xi−xj
 h−(xi−xj)

, if λ = ω;

0, otherwise.

The other Sλ are defined by the rule Sw−1(ω) := ∂w(Sω).

The Sλ are called Segre-Schwartz-MacPherson classes.

There is a positive puzzle formula for the structure constants for Sλ in

terms of Knutson-Tao puzzles [Knutson–Zinn-Justin 2021].
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q-deformation of KT classes

Define R := Z[e±x1 , . . . , e±xn ,q2]. Define an action of Sn on R, where si
swaps exi and exi+1 and fixes q2. Define the ring R̃ := ⊕λ∈Λn

k
Frac(R).

Definition

Consider the Z-linear operators on R, one for each i = 1, . . . ,n− 1:

∂i :=
1− q2

1− exi+1−xi
+

1− q2exi−xi+1

1− exi−xi+1
si.

The ∂i are called Deligne-Lusztig operators.

Define in R̃, an element Sω|λ :=


∏

i>j:λi<λj

1−exj−xi

1−q2exj−xi
, if λ = ω;

0, otherwise.

The other Sλ are defined by the rule Sw−1(ω) := ∂w(Sω).

The Sλ are called motivic Segre classes.

There is a positive puzzle formula for the structure constants for Sλ in

terms of Knutson-Tao puzzles [Knutson–Zinn-Justin 2021].
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A note on Chern classes

Remark

The element 1− exi−xi+1 is the first equivariant Chern class (in K-theory)

of the homogeneous line bundle Lxi+1−xi → G/B. Let’s replace 1− exi−xi+1

by c1(Lxi+1−xi) everywhere in the motivic Segre classes.

KT : ∂i :=
1− q2

c1(Lxi−xi+1)
+

1− q2(1− c1(Lxi−xi+1))

c1(Lxi+1−xi)
si.

Sω|λ :=


∏

i>j:λi<λj

c1(Lxi−xj
)

1−q2(1−c1(Lxi−xj
))
, if λ = ω;

0, otherwise.

Sw−1(ω) := ∂w(Sω).

Question

What if we replace c1 by a Chern class in another cohomology theory?
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’Connective’ K-theory

An algebraic oriented cohomology theory h∗ is a functor:

h∗ : {smooth algebraic varieties} → {graded, commutative, unital rings},

that satisfies ‘cohomology-type’ axioms.

Example

Chow ring theory and K-theory are oriented cohomology theories.

There is an oriented cohomology theory called connective K-theory.

After a localization, the first equivariant Chern class in connective

K-theory sends Lxi+1−xi to β−1(1− exi−xi+1), where β is a free variable.

Let’s replace everything with this new Chern class!
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Deforming the motivic Segre classes

The new operator and classes for connective K-theory (after localizing):

∂i :=
β(1− q2)

1− exi+1−xi
+

β(1− q2) + q2(1− exi−xi+1)

1− exi−xi+1
si.

Sω|λ :=


∏

i>j:λi<λj

1−exi−xj

β(1−q2)+q2(1−exi−xj)
, if λ = ω;

0, otherwise.

Sw−1(ω) := ∂w(Sω)

Lemma

∂w := ∂i1 ◦ · · · ◦ ∂ik is independent of the reduced expression w = si1 · · · sik :
1. ∂i ◦ ∂i+1 ◦ ∂i = ∂i+1 ◦ ∂i ◦ ∂i+1 for i = 1, . . . ,n− 2.

2. ∂i ◦ ∂j = ∂j ◦ ∂i for all |i− j| > 1.

Therefore, the classes Sλ are well-defined.

The β = 1 specialization recovers the motivic Segre classes SKTλ .

The β = 0 ’limit’ recovers the homogenizations ( h+ 1)length(λ)SHT
λ .
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The puzzle formula

Theorem (G. 2025+)

(qlength(λ)Sλ) · (qlength(µ)Sµ) =
∑

ν
ν

µλ (qlength(ν)Sν)
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Positivity

Define Q(β) := q2 +β− q2β.

Consider the submonoid M of Frac(Z[β][e±x1 , . . . , e±xn ,q±1]), defined as

the set of sums of products of the factors over all 1 ⩽ i < j ⩽ n:

−q± Q(β) exj−xi β(1−q2)

β(1−q2)+q2(1−exj−xi)
− 1−exj−xi

β(1−q2)+q2(1−exj−xi)
.

Then M is a positivity monoid.

As the structure constants in the Sλ basis live in M, it is in this sense that

our puzzle formula is positive.

Question

What are the deformed classes Sλ?
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Theorem (Localization package)

Let X be a smooth complex algebraic variety that has an algebraic action

of a complex torus T := (C×)n, and assume this action has finitely many

fixed points F. The natural ring homomorphisms

HT(X) →
⊕
f∈F

HT(pt) ≃
⊕
f∈F

Z[x1, . . . , xn];

KT(X) →
⊕
f∈F

KT(pt) ≃
⊕
f∈F

Z[e±x1 , . . . , e±xn ],

induced by the inclusions {fixed point} ↪→ X, are injective.

Definition

The Grassmannian Gr(k,n) is the smooth projective algebraic variety

consisting of k-dimensional subspaces of Cn. It has an algebraic action of

an n-dimensional torus T := (C×)n. The cotangent bundle T∗(Gr(k,n))
has an action of T ×C×, where T acts on the base Gr(k,n) and C× scales

the cotangent fibres.
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Recall the GKM conditions

Definition

An element (fλ)λ∈Λn
k
∈
⊕

λ∈Λn
k

Z[x1, . . . , xn,  h] is called GKM if:

whenever λ = (i, j)(λ ′), the difference fλ − fλ ′ is divisible by xi − xj.

A GKM class (fλ)λ∈Λn
k

can be identified with a class in HT×C×(T∗Gr(k,n)).

Definition

An element (fλ)λ∈Λn
k
∈
⊕

λ∈Λn
k
KT×C×(pt) =

⊕
λ∈Λn

k
Z[e±x1 , . . . , e±xn ,q2]

is called GKM if:

whenever λ = (i, j)(λ ′), we have fλ − fλ ′ is divisible by 1− exi−xj .

A GKM class (fλ)λ∈Λn
k

can be identified with a class in KT×C×(T∗Gr(k,n)).

SSM and motivic Segre classes are quotients of classes that

satisfy GKM called ’stable classes’.
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What are the deformed classes?

Recall the operator ∂i :=
β(1−q2)

1−exi+1−xi
+

β(1−q2)+q2(1−exi−xi+1)

1−exi−xi+1
si.

Clear the denominators in the Sλ to define classes Stλ:

Stω :=

 ∏
i>j:ωi<ωj

(β(1− q2) + q2(1− exi−xj))

Sω; Stw−1(ω) := ∂w(Stω).

Lemma

The elements Stλ satisfy:

whenever λ = (i, j)(λ ′), the difference Stλ − Stλ ′ is divisible by c1(Lxi−xj).

Question (WORK IN PROGRESS)

Does the previous lemma imply that the Stλ come from geometric ‘stable

classes’ in the connective K-ring of T∗(Gr(k,n))?
Answer: Almost surely yes– work in progress
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Rational function representatives for deformed classes

"Sum over all possible grids, and add the fugacities together"
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Rational function representatives for deformed classes

The rational functions Sλ represent the homogenizations qlength(λ)Sλ of

the connective elements Sλ defined earlier.
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Rational function representatives for deformed classes

The following diagram equals the evaluation xi := zσ−1(i) in Sλ:
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Proof of puzzle rule: rational function R-matrix

The rational functions Sλ can also be defined using the following matrix

entries, with xλ = β−1(1− eλ) and yλ = β(1− q2) + q2(1− eλ).
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Proof of puzzle rule: puzzle R-matrix
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Proof of the puzzle rule

The following diagram equals
0110

01010101 .
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Proof of the puzzle rule

The following diagram computes
1010

10100011 S1010|0101.

Removing 1010 in the center, it computes
∑

ν
ν

10100011 Sν|0101.
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Proof of the puzzle rule

The following diagram computes S0011|0101 · S1010|0101 (I am sweeping

details under the rug!) Note: red and green matrices “equal" blue matrix

(almost).

Must prove that this diagram equals previous one! Equality of formula at

all restrictions implies equality of classes.
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Proof of the puzzle rule

The following hold!
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Proof of the puzzle rule
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