Finite Reflection Groups

Raj Gandhi

Supervised by: K.Zaynullin

University of Ottawa
September 8, 2016

Reflection Groups

Definition

The Reflection of a vector t with respect to a fixed vector a in a real euclidean space is defined by

$$
s_{a} t=t-\frac{2(t, a)}{(a, a)} a
$$

A Reflection Group, W, is a group that is generated by a set of such linear operators s_{a}

Example

A Dihedral Group is a group that is generated by the rotations and reflections a two-dimensional polygon that result in new orientations of the polygon
The rotations and reflections of an m sided polygon can be achieved by reflections of the polygon over its diagonals
Thus any Dihedral Group of order 2 m can be thought of as a Reflection Group

Reflection Groups

Definition

The Reflection of a vector t with respect to a fixed vector a in a real euclidean space is defined by

$$
s_{a} t=t-\frac{2(t, a)}{(a, a)} a
$$

A Reflection Group, W, is a group that is generated by a set of such linear operators S_{a}

Example
 A Dihedral Group is a group that is generated by the rotations and reflections a two-dimensional polygon that result in new orientations of the polygon
 The rotations and reflections of an m sided polygon can be achieved by reflections of the polygon over its diagonals
 Thus any Dihedral Group of order 2 m can be thought of as a Reflection Group

Reflection Groups

Definition

The Reflection of a vector t with respect to a fixed vector a in a real euclidean space is defined by

$$
s_{a} t=t-\frac{2(t, a)}{(a, a)} a
$$

A Reflection Group, W, is a group that is generated by a set of such linear operators s_{a}

Example
 A Dihedral Group is a group that is generated by the rotations and reflections a two-dimensional polygon that result in new orientations of the polygon
 The rotations and reflections of an m sided polygon can be achieved by reflections of the polygon over its diagonals Thus any Dihedral Group of order 2 m can be thought of as a Reflection Group

Reflection Groups

Definition

The Reflection of a vector t with respect to a fixed vector a in a real euclidean space is defined by

$$
s_{a} t=t-\frac{2(t, a)}{(a, a)} a
$$

A Reflection Group, W, is a group that is generated by a set of such linear operators s_{a}

Example

A Dihedral Group is a group that is generated by the rotations and reflections a two-dimensional polygon that result in new orientations of the polygon
The rotations and reflections of an m sided polygon can be achieved by reflections of the polygon over its diagonals
Thus any Dihedral Group of order 2 m can be thought of as a Reflection Group

Reflection Groups

Definition

The Reflection of a vector t with respect to a fixed vector a in a real euclidean space is defined by

$$
s_{a} t=t-\frac{2(t, a)}{(a, a)} a
$$

A Reflection Group, W, is a group that is generated by a set of such linear operators s_{a}

Example

A Dihedral Group is a group that is generated by the rotations and reflections a two-dimensional polygon that result in new orientations of the polygon
The rotations and reflections of an m sided polygon can be achieved by reflections of the polygon over its diagonals
Thus any Dihedral Group of order 2 m can be thought of as a Reflection Group

Reflection Groups

Definition

The Reflection of a vector t with respect to a fixed vector a in a real euclidean space is defined by

$$
s_{a} t=t-\frac{2(t, a)}{(a, a)} a
$$

A Reflection Group, W, is a group that is generated by a set of such linear operators s_{a}

Example

A Dihedral Group is a group that is generated by the rotations and reflections a two-dimensional polygon that result in new orientations of the polygon
The rotations and reflections of an m sided polygon can be achieved by reflections of the polygon over its diagonals
Thus any Dihedral Group of order 2 m can be thought of as a Reflection Group

Reflection Groups

Example

Any Symmetric Group can be thought of as a subgroup of the group of orthogonal matrices

Transposing two basis vectors of an orthogonal matrix is a Reflection which sends some vector $e_{i}-e_{j}$ to its negative while fixing pointwise every other vector of the matrix

Every Symmetric Group is also generated by such transpositions

Therefore, every Symmetric Group can also be realized as a Reflection Group

Reflection Groups

Example

Any Symmetric Group can be thought of as a subgroup of the group of orthogonal matrices

Transposing two basis vectors of an orthogonal matrix is a Reflection which sends some vector $e_{i}-e_{j}$ to its negative while fixing pointwise every other vector of the matrix

Every Symmetric Group is also generated by such transpositions

Therefore, every Symmetric Group can also be realized as a Reflection Group

Reflection Groups

Example

Any Symmetric Group can be thought of as a subgroup of the group of orthogonal matrices

Transposing two basis vectors of an orthogonal matrix is a Reflection which sends some vector $e_{i}-e_{j}$ to its negative while fixing pointwise every other vector of the matrix

Every Symmetric Group is also generated by such transpositions

Therefore, every Symmetric Group can also be realized as a Reflection Group

Reflection Groups

Example

Any Symmetric Group can be thought of as a subgroup of the group of orthogonal matrices

Transposing two basis vectors of an orthogonal matrix is a Reflection which sends some vector $e_{i}-e_{j}$ to its negative while fixing pointwise every other vector of the matrix

Every Symmetric Group is also generated by such transpositions

Therefore, every Symmetric Group can also be realized as a Reflection Group

Reflection Groups

Example

Any Symmetric Group can be thought of as a subgroup of the group of orthogonal matrices

Transposing two basis vectors of an orthogonal matrix is a Reflection which sends some vector $e_{i}-e_{j}$ to its negative while fixing pointwise every other vector of the matrix

Every Symmetric Group is also generated by such transpositions

Therefore, every Symmetric Group can also be realized as a Reflection Group

Root Systems

A root system R is a set of vectors that obeys the following axioms:

$$
\begin{array}{ll}
R \cap c a-\{a,-a\} & \forall a \in R \\
S_{a} R=R & \forall a \in R
\end{array}
$$

Example

The Dihedral Group of order 4 preserves these eight vectors:

$$
\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)
$$

If we think of this Dihedral Group as a Reflection Group, these vectors form a root system with associated reflection group W of generators associated with each vector

Root Systems

A root system R is a set of vectors that obeys the following axioms:

[^0]
Root Systems

A root system R is a set of vectors that obeys the following axioms:
(1)

$$
R \cap \mathbf{c a}=\{a,-a\} \quad \forall a \in R
$$

Example

The Dihedral Group of order 4 preserves these eight vectors:

$$
\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)
$$

If we think of this Dihedral Group as a Reflection Group, these vectors form a root system with associated reflection group W of generators associated with each vector

Root Systems

A root system R is a set of vectors that obeys the following axioms:
(1)
(2)

$$
\begin{array}{ll}
R \cap \mathbf{c a}=\{a,-a\} & \forall a \in R \\
s_{a} R=R & \forall a \in R
\end{array}
$$

Example

The Dihedral Group of order 4 preserves these eight vectors: $\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)$ If we think of this Dihedral Group as a Reflection Group, these vectors form a root system with associated reflection group W of generators associated with each vector

Root Systems

A root system R is a set of vectors that obeys the following axioms:

$$
\begin{array}{ll}
R \cap \mathbf{c a}=\{a,-a\} & \forall a \in R \tag{1}\\
s_{a} R=R & \forall a \in R
\end{array}
$$

Example

The Dihedral Group of order 4 preserves these eight vectors:

$$
\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)
$$

If we think of this Dihedral Group as a Reflection Group, these vectors form a root system with associated reflection group W of generators associated with each vector

Root Systems

A root system R is a set of vectors that obeys the following axioms:

$$
\begin{array}{ll}
R \cap \mathbf{c a}=\{a,-a\} & \forall a \in R \tag{1}\\
s_{a} R=R & \forall a \in R
\end{array}
$$

Example

The Dihedral Group of order 4 preserves these eight vectors:

$$
\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)
$$

If we think of this Dihedral Group as a Reflection Group, these vectors form a root system with associated reflection group W of generators associated with each vector

Positive and Simple Systems

Definition

A Positive System II is a partition of the Root System obtained from a linear combination of an ordered basis of V with strictly positive coefficients
A Negative System - II is a partition of the Root System obtained from a linear combination of an ordered basis of V with with strictly negative coefficients

$$
R=\Pi \cup-\Pi
$$

A Simple System is a vector space basis for the roots in R Every root, B, in the Root System can be obtained from some linear combination of simple roots with coefficients, a_{i}, all of the same sign

$$
B=\sum_{i} c_{a_{i}} a_{i}
$$

Positive and Simple Systems

Definition

A Positive System Π is a partition of the Root System obtained from a linear combination of an ordered basis of V with strictly positive coefficients
A Negative System $-\Pi$ is a partition of the Root System obtained from a linear combination of an ordered basis of V with with strictly negative coefficients $R=\Pi \cup-\Pi$

A Simple System is a vector space basis for the roots in R Every root, B, in the Root System can be obtained from some linear combination of simple roots with coefficients, a_{i}, all of the same sign

Positive and Simple Systems

Definition

A Positive System Π is a partition of the Root System obtained from a linear combination of an ordered basis of V with strictly positive coefficients
A Negative System $-\Pi$ is a partition of the Root System obtained from a linear combination of an ordered basis of V with with strictly negative coefficients

$$
R=\Pi \cup-\Pi
$$

A Simple System is a vector space basis for the roots in R Every root, B, in the Root System can be obtained from some linear combination of simple roots with coefficients, a_{i}, all of the same sign

Positive and Simple Systems

Definition

A Positive System Π is a partition of the Root System obtained from a linear combination of an ordered basis of V with strictly positive coefficients
A Negative System $-\Pi$ is a partition of the Root System obtained from a linear combination of an ordered basis of V with with strictly negative coefficients

$$
R=\Pi \cup-\Pi
$$

A Simple System is a vector space basis for the roots in R

Positive and Simple Systems

Definition

A Positive System Π is a partition of the Root System obtained from a linear combination of an ordered basis of V with strictly positive coefficients
A Negative System $-\Pi$ is a partition of the Root System obtained from a linear combination of an ordered basis of V with with strictly negative coefficients

$$
R=\Pi \cup-\Pi
$$

A Simple System is a vector space basis for the roots in R Every root, B, in the Root System can be obtained from some linear combination of simple roots with coefficients, a_{i}, all of the same sign

$$
B=\sum_{i} c_{a_{i}} a_{i}
$$

Positive and Simple Systems

How do we know Simple Systems exist?

Proof.

Take a positive system II in R

Choose a set of roots in Π that are not expressible as a linear combination of the other roots in Π with strictly positive coefficients

This is a simple system in Π, which implies that simple systems exist

Example

A simple system for the Symmetric Group is the set

$$
S=\left\{e_{i}-e_{j} \mid i=j+1,0<j<n\right\}
$$

Positive and Simple Systems

How do we know Simple Systems exist?

Proof.

Take a positive system Π in R

Choose a set of roots in Π that are not expressible as a linear combination of the other roots in Π with strictly positive coefficients

This is a simple system in Π, which implies that simple systems exist

Example

A simple system for the Symmetric Group is the set

Positive and Simple Systems

How do we know Simple Systems exist?

Proof.

Take a positive system Π in R

Choose a set of roots in Π that are not expressible as a linear combination of the other roots in Π with strictly positive coefficients

This is a simple system in Π, which implies that simple systems exist

$$
\begin{aligned}
& \text { Example } \\
& \text { A simple system for the Symmetric Group is the set } \\
& \qquad S=\left\{e_{i}-e_{j} \mid i=j+1,0<j<n\right\} \\
& \text { Raj Gandhi (University of Ottawa) } \\
& \text { Finite Reflection Groups }
\end{aligned}
$$

Positive and Simple Systems

How do we know Simple Systems exist?

Proof.

Take a positive system Π in R
Choose a set of roots in Π that are not expressible as a linear combination of the other roots in Π with strictly positive coefficients

This is a simple system in Π, which implies that simple systems exist

Example

A simple system for the Symmetric Group is the set

Positive and Simple Systems

How do we know Simple Systems exist?

Proof.

Take a positive system Π in R
Choose a set of roots in Π that are not expressible as a linear combination of the other roots in Π with strictly positive coefficients

This is a simple system in Π, which implies that simple systems exist

Example

A simple system for the Symmetric Group is the set

$$
S=\left\{e_{i}-e_{j} \mid i=j+1,0<j<n\right\}
$$

Positive and Simple Systems

Theorem

$$
(a, b) \leq 0 \quad \forall a, b \in \triangle
$$

Theorem

```
Let }\triangle\mathrm{ be a simple system contained in II. If a }\in\triangle\mathrm{ , then
```

$s_{a}(\Pi /\{a\})=\Pi /\{a\}$

Proof.

$\exists B \in \Pi$ that can be written as a linear combination of \triangle with strictly positive coefficients

But $s_{a} B=B-\frac{2(B, a)}{(a, a)} a=B-\frac{2 \sum_{k} c_{k}(k, a)}{(a, a)} a>0, B \neq a, k \in \triangle$
If $B=a$, then $s_{a} B-s_{a} a--a$
Thus the only positive root made negative by s_{a} is a

Positive and Simple Systems

Theorem

$$
(a, b) \leq 0 \quad \forall a, b \in \triangle
$$

Theorem

\square
Let \triangle be a simple system contained in II. If $a \in \triangle$, then
$s_{a}(\Pi /\{a\})=\Pi /\{a\}$

Proof.

$\exists B \in \Pi$ that can be written as a linear combination of \triangle with strictly positive coefficients

But $s_{a} B=B-\frac{2(B, a)}{(a, a)} a=B-\frac{2 \sum_{k} c_{k}(k, a)}{(a, a)} a>0, B \neq a, k \in \triangle$
If $B=a$, then $s_{a} B=s_{a} a=-a$

Thus the only positive root made negative by s_{a} is a

Positive and Simple Systems

Theorem

$$
(a, b) \leq 0 \quad \forall a, b \in \triangle
$$

Theorem

Let \triangle be a simple system contained in Π. If $a \in \triangle$, then $s_{a}(\Pi /\{a\})=\Pi /\{a\}$
$\exists B \in \Pi$ that can be written as a linear combination of \triangle with strictly positive coefficients

But $s_{a} B=B-\frac{2(B, a)}{(a, a)} a=B-\frac{2 \sum_{k} c_{k}(k, a)}{(a, a)} a>0, B \neq a, k \in \triangle$
If $B=a$, then $s_{a} B=s_{a} a=-a$
Thus the only positive root made negative by s_{a} is a

Positive and Simple Systems

Theorem

$$
(a, b) \leq 0 \quad \forall a, b \in \triangle
$$

Theorem

Let \triangle be a simple system contained in Π. If $a \in \triangle$, then $s_{a}(\Pi /\{a\})=\Pi /\{a\}$

Proof.

$\exists B \in \Pi$ that can be written as a linear combination of \triangle with strictly positive coefficients

If $B=a$, then $s_{a} B=s_{a} a=-a$

Thus the only positive root made negative by s_{a} is a

Positive and Simple Systems

Theorem

$$
(a, b) \leq 0 \quad \forall a, b \in \triangle
$$

Theorem

Let \triangle be a simple system contained in Π. If $a \in \triangle$, then $s_{a}(\Pi /\{a\})=\Pi /\{a\}$

Proof.

$\exists B \in \Pi$ that can be written as a linear combination of \triangle with strictly positive coefficients

But $s_{a} B=B-\frac{2(B, a)}{(a, a)} a=B-\frac{2 \sum_{k} c_{k}(k, a)}{(a, a)} a>0, B \neq a, k \in \triangle$ If $B=a$, then $s_{a} B=s_{a} a=-a$

Thus the only positive root made negative by s_{a} is a

Positive and Simple Systems

Theorem

$$
(a, b) \leq 0 \quad \forall a, b \in \triangle
$$

Theorem

Let \triangle be a simple system contained in Π. If $a \in \triangle$, then $s_{a}(\Pi /\{a\})=\Pi /\{a\}$

Proof.

$\exists B \in \Pi$ that can be written as a linear combination of \triangle with strictly positive coefficients

But $s_{a} B=B-\frac{2(B, a)}{(a, a)} a=B-\frac{2 \sum_{k} c_{k}(k, a)}{(a, a)} a>0, B \neq a, k \in \triangle$
If $B=a$, then $s_{a} B=s_{a} a=-a$

Thus the only positive root made negative by s_{a} is a

Positive and Simple Systems

Theorem

$$
(a, b) \leq 0 \quad \forall a, b \in \triangle
$$

Theorem

Let \triangle be a simple system contained in Π. If $a \in \triangle$, then $s_{a}(\Pi /\{a\})=\Pi /\{a\}$

Proof.

$\exists B \in \Pi$ that can be written as a linear combination of \triangle with strictly positive coefficients

But $s_{a} B=B-\frac{2(B, a)}{(a, a)} a=B-\frac{2 \sum_{k} c_{k}(k, a)}{(a, a)} a>0, B \neq a, k \in \triangle$
If $B=a$, then $s_{a} B=s_{a} a=-a$
Thus the only positive root made negative by s_{a} is a

Positive and Simple Systems

Theorem
 Any two positive systems in R are conjugate under W

```
Proof.
    Take two positive systems, II and II', in R
If r=Card{\Pi\cap-\Pi'} and r=0, then \Pi=-\Pi'
If r>0, then \existsa\in \Pi' such that a\in-\Pi
Thus take a\in \Pi' and a }\ddagger\Pi\mathrm{ so that Card { }\cap\cap\mp@subsup{s}{a}{}(-\mp@subsup{\Pi}{}{\prime})}=r-
Continuing this way we furnish an element w such that
Card}{\Pi\capw(-\mp@subsup{\Pi}{}{\prime})}=
```


Positive and Simple Systems

Theorem

Any two positive systems in R are conjugate under W

Proof.

Take two positive systems, Π and Π^{\prime}, in R

Continuing this way we furnish an element w such that

Positive and Simple Systems

Theorem

Any two positive systems in R are conjugate under W

Proof.

Take two positive systems, Π and Π^{\prime}, in R
If $r=\operatorname{Card}\left\{\Pi \cap-\Pi^{\prime}\right\}$ and $r=0$, then $\Pi=-\Pi^{\prime}$

If $r>0$, then $\exists a \in \Pi^{\prime}$ such that $a \in-\Pi$
Thus take $a \in \Pi^{\prime}$ and $a \notin \Pi$ so that Card $\left\{\Pi \cap s_{a}\left(-\Pi^{\prime}\right)\right\}=r-1$

Continuing this way we furnish an element w such that

Positive and Simple Systems

Theorem

Any two positive systems in R are conjugate under W

Proof.

Take two positive systems, Π and Π^{\prime}, in R
If $r=\operatorname{Card}\left\{\Pi \cap-\Pi^{\prime}\right\}$ and $r=0$, then $\Pi=-\Pi^{\prime}$

If $r>0$, then $\exists a \in \Pi^{\prime}$ such that $a \in-\Pi$.
Thus take $a \in \Pi^{\prime}$ and $a \notin \Pi$ so that $C a r d\left\{\Pi \cap s_{a}\left(-\Pi^{\prime}\right)\right\}=r-1$
Continuing this way we furnish an element w such that
Card $\left\{\Pi \cap w\left(-\Pi^{\prime}\right)\right\}=0$

Positive and Simple Systems

Theorem

Any two positive systems in R are conjugate under W

Proof.

Take two positive systems, Π and Π^{\prime}, in R
If $r=\operatorname{Card}\left\{\Pi \cap-\Pi^{\prime}\right\}$ and $r=0$, then $\Pi=-\Pi^{\prime}$

If $r>0$, then $\exists a \in \Pi^{\prime}$ such that $a \in-\Pi$.
Thus take $a \in \Pi^{\prime}$ and $a \notin \Pi$ so that Card $\left\{\Pi \cap s_{a}\left(-\Pi^{\prime}\right)\right\}=r-1$
Continuing this way we furnish an element w such that
Card $\left\{\Pi \cap w\left(-\Pi^{\prime}\right)\right\}=0$

Positive and Simple Systems

Theorem

Any two positive systems in R are conjugate under W

Proof.

Take two positive systems, Π and Π^{\prime}, in R
If $r=\operatorname{Card}\left\{\Pi \cap-\Pi^{\prime}\right\}$ and $r=0$, then $\Pi=-\Pi^{\prime}$
If $r>0$, then $\exists a \in \Pi^{\prime}$ such that $a \in-\Pi$.
Thus take $a \in \Pi^{\prime}$ and $a \notin \Pi$ so that $\operatorname{Card}\left\{\Pi \cap s_{a}\left(-\Pi^{\prime}\right)\right\}=r-1$
Continuing this way we furnish an element w such that $\operatorname{Card}\left\{\Pi \cap w\left(-\Pi^{\prime}\right)\right\}=0$

Properties of Reflection Groups

Theorem

For a fixed simple system \triangle, W is generated by simple reflections, $s_{a}(a \in \triangle)$

Theorem

Given $\triangle, \forall B \in R \exists w \in W$ such that $w B \in \triangle$

Definition

Take $w \in W$, where $w=s_{i_{1}} s_{i_{2}} \ldots s_{i}$,
The length of w, defined by Length Function I(w), is the smallest r for which w exists
Some properties of reflection combinations, ie: $w w^{\prime}$, useful for later proofs are
(1) $I\left(w w^{\prime}\right) \leq I(w)+I\left(w^{\prime}\right)$ since $\max \left(l\left(w w^{\prime}\right)\right)=r+r^{\prime}$

- $I\left(s_{a} w\right)=I(w) \pm 1$

Properties of Reflection Groups

```
Theorem
For a fixed simple system }\triangle,W\mathrm{ is generated by simple reflections,
sa}(a\in\triangle
```


Theorem

```
\(\square\)
```


Definition

```
Take \(w \in W\), where \(w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{f}}\)
The length of \(w\), defined by Length Function I(w), is the smallest \(r\) for which w exists
Some properties of reflection combinations, ie: ww', useful for later proofs are
(1) \(I\left(w w^{\prime}\right) \leq I(w)+I\left(w^{\prime}\right)\) since \(\max \left(I\left(w w^{\prime}\right)\right)=r+r^{\prime}\)
(2) \(I\left(s_{a} w\right)=I(w) \pm 1\)
```


Properties of Reflection Groups

Theorem

For a fixed simple system \triangle, W is generated by simple reflections, $s_{a}(a \in \triangle)$

Theorem

Given $\triangle, \forall B \in R \exists w \in W$ such that $w B \in \triangle$

Definition

Take $w \in W$, where $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$
The length of w, defined by Length Function $/(w)$, is the smallest r for which w exists
Some properties of reflection combinations, ie: $w w^{\prime}$, useful for later proofs are
(1) $I\left(w w^{\prime}\right) \leq I(w)+I\left(w^{\prime}\right)$ since $\max \left(I\left(w w^{\prime}\right)\right)=r+r^{\prime}$
(2) $I\left(s_{a} w\right)=I(w) \pm 1$

Properties of Reflection Groups

Theorem

For a fixed simple system \triangle, W is generated by simple reflections, $s_{a}(a \in \triangle)$

Theorem

Given $\triangle, \forall B \in R \exists w \in W$ such that $w B \in \triangle$

Definition

Take $w \in W$, where $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$
The length of w, defined by Length Function $I(w)$, is the smallest r for which w exists
Some properties of reflection combinations, ie: ww', useful for later proofs are
(1) $I\left(w w^{\prime}\right) \leq I(w)+I\left(w^{\prime}\right)$ since $\max \left(I\left(w w^{\prime}\right)\right)=r+r$ (2) $l(s, w)=I(w) \pm 1$

Properties of Reflection Groups

Theorem

For a fixed simple system \triangle, W is generated by simple reflections, $s_{a}(a \in \triangle)$

Theorem

Given $\triangle, \forall B \in R \exists w \in W$ such that $w B \in \triangle$

Definition

Take $w \in W$, where $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$
The length of w, defined by Length Function $I(w)$, is the smallest r for which w exists
Some properties of reflection combinations, ie: $w w^{\prime}$, useful for later proofs
are
$\begin{aligned} & \text { (1) } I\left(w w^{\prime}\right) \leq I(w)+I\left(w^{\prime}\right) \text { since } \max \left(I\left(w w^{\prime}\right)\right)=r+r^{\prime} \\ & \text { (1) } I\left(s_{a} w\right)=I(w) \pm 1\end{aligned}$

Properties of Reflection Groups

Theorem

For a fixed simple system \triangle, W is generated by simple reflections, $s_{a}(a \in \triangle)$

Theorem

Given $\triangle, \forall B \in R \exists w \in W$ such that $w B \in \triangle$

Definition

Take $w \in W$, where $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$
The length of w, defined by Length Function $I(w)$, is the smallest r for which w exists
Some properties of reflection combinations, ie: $w w^{\prime}$, useful for later proofs are (1) $I\left(w w^{\prime}\right) \leq I(w)+I\left(w^{\prime}\right)$ since $\max \left(I\left(w w^{\prime}\right)\right)=r+r^{\prime}$

Properties of Reflection Groups

Theorem

For a fixed simple system \triangle, W is generated by simple reflections, $s_{a}(a \in \triangle)$

Theorem

Given $\triangle, \forall B \in R \exists w \in W$ such that $w B \in \triangle$

Definition

Take $w \in W$, where $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$
The length of w, defined by Length Function $I(w)$, is the smallest r for which w exists
Some properties of reflection combinations, ie: $w w^{\prime}$, useful for later proofs are
(1) $I\left(w w^{\prime}\right) \leq I(w)+I\left(w^{\prime}\right)$ since $\max \left(I\left(w w^{\prime}\right)\right)=r+r^{\prime}$

Properties of Reflection Groups

Theorem

For a fixed simple system \triangle, W is generated by simple reflections, $s_{a}(a \in \triangle)$

Theorem

Given $\triangle, \forall B \in R \exists w \in W$ such that $w B \in \triangle$

Definition

Take $w \in W$, where $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$
The length of w, defined by Length Function $I(w)$, is the smallest r for which w exists
Some properties of reflection combinations, ie: $w w^{\prime}$, useful for later proofs are
(1) $I\left(w w^{\prime}\right) \leq I(w)+I\left(w^{\prime}\right)$ since $\max \left(I\left(w w^{\prime}\right)\right)=r+r^{\prime}$
(2) $I\left(s_{a} w\right)=I(w) \pm 1$

Application of the Length Function

Given W with an associated root system, the number of positive roots made negative by w can be characterized by the equation:

$$
n(w)=\operatorname{Card}\left\{\Pi \cap w^{-1}(-\Pi)\right\}
$$

From this definition and the properties of the length function, we can prove that

$$
\begin{aligned}
& w a>0 \Longrightarrow n\left(w s_{a}\right)=n(w)+1 \\
& w a<0 \Longrightarrow n\left(w s_{a}\right)=n(w)-1
\end{aligned}
$$

Corollary: Since $n(w)$ can increase by at most 1 for each added generator,

Application of the Length Function

Given W with an associated root system, the number of positive roots made negative by w can be characterized by the equation:

$$
n(w)=\operatorname{Card}\left\{\Pi \cap w^{-1}(-\Pi)\right\}
$$

From this definition and the properties of the length function, we can prove that

$$
\begin{aligned}
& w a>0 \Longrightarrow n\left(w s_{a}\right)=n(w)+1 \\
& w a<0 \Longrightarrow n\left(w s_{a}\right)=n(w)-1
\end{aligned}
$$

Corollary: Since $n(w)$ can increase by at most 1 for each added generator,

Application of the Length Function

Given W with an associated root system, the number of positive roots made negative by w can be characterized by the equation:

$$
n(w)=\operatorname{Card}\left\{\Pi \cap w^{-1}(-\Pi)\right\}
$$

From this definition and the properties of the length function, we can prove that

$$
\begin{aligned}
& w a>0 \Longrightarrow n\left(w s_{a}\right)=n(w)+1 \\
& w a<0 \Longrightarrow n\left(w s_{a}\right)=n(w)-1
\end{aligned}
$$

Application of the Length Function

Given W with an associated root system, the number of positive roots made negative by w can be characterized by the equation:

$$
n(w)=\operatorname{Card}\left\{\Pi \cap w^{-1}(-\Pi)\right\}
$$

From this definition and the properties of the length function, we can prove that
©

$$
\begin{aligned}
w a>0 \Longrightarrow n\left(w s_{a}\right) & =n(w)+1 \\
w a<0 \Longrightarrow n\left(w s_{a}\right) & =n(w)-1
\end{aligned}
$$

Corollary: Since $\mathrm{n}(\mathrm{w})$ can increase by at most 1 for each added generator,

Application of the Length Function

Given W with an associated root system, the number of positive roots made negative by w can be characterized by the equation:

$$
n(w)=\operatorname{Card}\left\{\Pi \cap w^{-1}(-\Pi)\right\}
$$

From this definition and the properties of the length function, we can prove that

$$
\begin{aligned}
& w a>0 \Longrightarrow n\left(w s_{a}\right)=n(w)+1 \\
& w a<0 \Longrightarrow n\left(w s_{a}\right)=n(w)-1
\end{aligned}
$$

Corollary: Since $\mathrm{n}(\mathrm{w})$ can increase by at most 1 for each added generator, $n(w) \leq r$

Properties of Reflection Groups

```
Theorem
```


The Deletion Condition

```
Fix a simple system \(\triangle\). Take \(w=s_{1} \ldots s_{r}\) with \(w \in W\) as a product of simple reflections. Suppose \(n(w)<r\). Then there are indices \(1 \leq i<j \leq r\) such that
\[
a_{i}=\left(s_{i+1} \cdots s_{j-1}\right) a_{j}
\]
\(s_{i+1} \ldots s_{j}=s_{i} \ldots s_{j-1}\)
```



```
\(w=S_{1} \ldots S_{i} \ldots S_{j} \ldots S_{r}\)
```


Proof.
 \square

Properties of Reflection Groups

Theorem
The Deletion Condition
Fix a simple system \triangle. Take $w=s_{1} \ldots s_{r}$ with $w \in W$ as a product of simple reflections. Suppose $n(w)<r$. Then there are indices
$1 \leq i<j \leq r$ such that
$a_{i}=\left(s_{i+1} \ldots s_{j-1}\right) a_{j}$
$s_{i+1} \ldots s_{j}=s_{i} \ldots s_{j-1}$

Proof.

$w=s_{1} \ldots s_{i} s_{i}+1 \ldots s_{j-1} s_{j} s_{j}+1 \ldots s_{r}=s_{1} \ldots s_{j}\left(s_{i} \ldots s_{j-1}\right) s_{j+1} \ldots s_{r}=$

Properties of Reflection Groups

Theorem
The Deletion Condition
Fix a simple system \triangle. Take $w=s_{1} \ldots s_{r}$ with $w \in W$ as a product of simple reflections. Suppose $n(w)<r$. Then there are indices
$1 \leq i<j \leq r$ such that
$a_{i}=\left(s_{i+1} \cdots s_{j-1}\right) a_{j}$
$s_{i+1} \ldots s_{j}=s_{i} \ldots s_{j-1}$

Proof.

\square

Properties of Reflection Groups

Theorem

The Deletion Condition

Fix a simple system \triangle. Take $w=s_{1} \ldots s_{r}$ with $w \in W$ as a product of simple reflections. Suppose $n(w)<r$. Then there are indices $1 \leq i<j \leq r$ such that

$$
a_{i}=\left(s_{i+1} \ldots s_{j-1}\right) a_{j}
$$

$$
s_{i+1} \ldots s_{j}=s_{i} \ldots s_{j-1}
$$

Proof

Properties of Reflection Groups

Theorem

The Deletion Condition

Fix a simple system \triangle. Take $w=s_{1} \ldots s_{r}$ with $w \in W$ as a product of simple reflections. Suppose $n(w)<r$. Then there are indices $1 \leq i<j \leq r$ such that
(1)

$$
a_{i}=\left(s_{i+1} \ldots s_{j-1}\right) a_{j}
$$

(2)
$s_{i+1} \ldots s_{j}=s_{i} \ldots s_{j-1}$

Proof

Properties of Reflection Groups

Theorem

The Deletion Condition

Fix a simple system \triangle. Take $w=s_{1} \ldots s_{r}$ with $w \in W$ as a product of simple reflections. Suppose $n(w)<r$. Then there are indices $1 \leq i<j \leq r$ such that
(1)

$$
a_{i}=\left(s_{i+1} \ldots s_{j-1}\right) a_{j}
$$

(2)
$s_{i+1} \ldots s_{j}=s_{i} \ldots s_{j-1}$
(3)

$$
w=s_{1} \ldots s_{i} \ldots s_{j} \ldots s_{r}
$$

Proof.

$w=s_{1} \ldots s_{i} s_{i}+1 \ldots s_{j-1} s_{j} s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i}\left(s_{i} \ldots s_{j-1}\right) s_{j+1} \ldots s_{r}=$

Properties of Reflection Groups

Theorem

The Deletion Condition

Fix a simple system \triangle. Take $w=s_{1} \ldots s_{r}$ with $w \in W$ as a product of simple reflections. Suppose $n(w)<r$. Then there are indices $1 \leq i<j \leq r$ such that
(1)

$$
a_{i}=\left(s_{i+1} \ldots s_{j-1}\right) a_{j}
$$

(2)

$$
s_{i+1} \ldots s_{j}=s_{i} \ldots s_{j-1}
$$

$$
w=s_{1} \ldots S_{i} \ldots S_{j} \ldots S_{r}
$$

Proof.

$$
\begin{gathered}
w=s_{1} \ldots s_{i} s_{i+1} \ldots s_{j-1} s_{j} s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i}\left(s_{i} \ldots s_{j-1}\right) s_{j+1} \ldots s_{r}= \\
s_{1} \ldots s_{i} \ldots s_{j} \ldots s_{r}
\end{gathered}
$$

Properties of Reflection Groups

Theorem

$$
\text { If } w \in W \text { is reduced, then } n(w)=I(w)
$$

Proof.

We already know $n(w) \leq 1(w)$
If $n(w)<I(w)=r$, then by the Deletion Condition, $I(w)$ is equal to a product of $r-2$ simple reflections

Since $I(w)=r$, we have a contradiction, forcing $n(w)=I(w)$

Properties of Reflection Groups

Theorem

$$
\text { If } w \in W \text { is reduced, then } n(w)=I(w)
$$

Proof.

We already know $n(w) \leq I(w)$
If $n(w)<I(w)=r$, then by the Deletion Condition, I(w) is equal to a product of $r-2$ simple reflections

Since $I(w)=r$, we have a contradiction, forcing $n(w)=I(w)$

Properties of Reflection Groups

Theorem

$$
\text { If } w \in W \text { is reduced, then } n(w)=I(w)
$$

Proof.

We already know $n(w) \leq I(w)$
If $n(w)<I(w)=r$, then by the Deletion Condition, $I(w)$ is equal to a product of $r-2$ simple reflections

Properties of Reflection Groups

Theorem

$$
\text { If } w \in W \text { is reduced, then } n(w)=I(w)
$$

Proof.

We already know $n(w) \leq I(w)$
If $n(w)<I(w)=r$, then by the Deletion Condition, $I(w)$ is equal to a product of r-2 simple reflections

Since $I(w)=r$, we have a contradiction, forcing $n(w)=I(w)$

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Definition

Fix a simple system Δ in R with an associated reflection group W . Then a Coxeter Group S is a group that generates W and is subject only to the relations

where $m(a, b)$ is the order of $s_{a} s_{b}$ in W

Big Question: Can every reflection group W be generated by a Coxeter Group?
Answer: Yes!

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \Delta\right\}$

Definition

Fix a simple system Δ in R with an associated reflection group W.Then a Coxeter Group S is a group that generates W and is subject only to the relations

$$
S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \Delta\right\}
$$

where $m(a, b)$ is the order of $s_{a} s_{b}$ in W

Big Question: Can every reflection group W be generated by a Coxeter Group?
Answer: Yes!

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Definition

Fix a simple system Δ in R with an associated reflection group W . Then a Coxeter Group S is a group that generates W and is subject only to the relations

$$
S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \Delta\right\}
$$

where $m(a, b)$ is the order of $s_{a} s_{b}$ in W

Big Question: Can every reflection group W be generated by a Coxeter Group?
Answer: Yes!

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Definition

Fix a simple system Δ in R with an associated reflection group W . Then a Coxeter Group S is a group that generates W and is subject only to the relations

$$
S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \Delta\right\}
$$

where $m(a, b)$ is the order of $s_{a} s_{b}$ in W

Big Question: Can every reflection group W be generated by a Coxeter Group?
Answer: Yes!

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

Since the collection of relations $s_{1} \ldots s_{r}=1$ in W completely describes W , we will show by induction that
$\left(S \Longrightarrow s_{i_{1}} \ldots s_{i_{k}}=1, k<r\right) \Longrightarrow\left(S \Longrightarrow s_{1} \ldots s_{r}=1(1)\right.$ for every relation of r reflections in W)
Note: $r=2 q$ for $q \in Z$
Note: The base case of $\mathrm{q}=1$ holds since $s_{1} s_{2}=1$ implies that $s_{1}=s_{2}^{-1}$ so $s_{1}=s_{2}$, and realize that $\left(s_{i} s_{i}\right)^{1}=1$
Now rewrite (1) as $s_{1} \ldots s_{q+1}=s_{r} \ldots s_{q+2}$; since $\mid(r i g h t$ side $)=q-1$, this means I(left side) $=q+1$
By the Deletion Condition, there are indices $1 \leq i<j \leq q+1$ such that $s_{i} \ldots s_{j+1}=s_{i+1} \ldots s_{j}(2) \Longleftrightarrow$

Since we assume (3) is implied by S if it has less than r reflections, take $I(3)<r$. Then the Deletion Condition says that we may omit two factors

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

Since the collection of relations $s_{1} \ldots s_{r}=1$ in W completely describes W , we will show by induction that
$\left(S \Longrightarrow s_{i_{1}} \ldots s_{i_{k}}=1, k<r\right) \Longrightarrow\left(S \Longrightarrow s_{1} \ldots s_{r}=1(1)\right.$ for every relation of r reflections in W)
Note: $r=2 q$ for $q \in Z$
Note: The base case of $q=1$ holds since $s_{1} s_{2}=1$ implies that $s_{1}=s_{2}^{-1}$ so $s_{1}=s_{2}$, and realize that $\left(s_{i} s_{i}\right)^{1}=1$
Now rewrite (1) as $s_{1} \ldots s_{a+1}=s_{r} \ldots s_{a+2}$; since $\mid($ right side $)=q-1$, this means I(left side) $=\mathrm{q}+1$
By the Deletion Condition, there are indices $1 \leq i<j \leq q+1$ such that $s_{i} \ldots s_{i+1}=s_{i+1} \ldots s_{i}(2) \Longleftrightarrow$

Since we assume (3) is implied by S if it has less than r reflections, take $I(3)<r$. Then the Deletion Condition says that we may omit two factors

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

Since the collection of relations $s_{1} \ldots s_{r}=1$ in W completely describes W, we will show by induction that
$\left(S \Longrightarrow s_{i_{1}} \ldots s_{i_{k}}=1, k<r\right) \Longrightarrow\left(S \Longrightarrow s_{1} \ldots s_{r}=1(1)\right.$ for every relation of r reflections in W)
Note: $r=2 q$ for $q \in Z$
Note: The base case of $\mathrm{q}=1$ holds since $s_{1} s_{2}=1$ implies that $s_{1}=s_{2}^{-1}$ so $s_{1}=s_{2}$, and realize that $\left(s_{i} s_{i}\right)^{1}=1$
Now rewrite (1) as $s_{1} \ldots s_{q+1}=s_{r} \ldots s_{q+2}$; since I(right side) $=\mathrm{q}-1$, this
means I(left side) $=\mathrm{q}+1$
By the Deletion Condition, there are indices $1 \leq i<j \leq q+1$ such that $s_{i} \ldots s_{j+1}=s_{i+1} \ldots s_{j}(2) \Longleftrightarrow$

Since we assume (3) is implied by S if it has less than r reflections, take $I(3)<r$. Then the Deletion Condition says that we may omit two factors

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

Since the collection of relations $s_{1} \ldots s_{r}=1$ in W completely describes W , we will show by induction that
$\left(S \Longrightarrow s_{i_{1}} \ldots s_{i_{k}}=1, k<r\right) \Longrightarrow\left(S \Longrightarrow s_{1} \ldots s_{r}=1(1)\right.$ for every relation of r reflections in W)
Note: $r=2 q$ for $q \in Z$
Note: The base case of $\mathrm{q}=1$ holds since $s_{1} s_{2}=1$ implies that $s_{1}=s_{2}^{-1}$ so $s_{1}=s_{2}$, and realize that $\left(s_{i} s_{i}\right)^{1}=1$
Now rewrite (1) as $s_{1} \ldots s_{q+1}=s_{r} \ldots s_{q+2}$; since $\mid($ right side $)=q-1$, this means
By the Deletion Condition, there are indices $1 \leq i<j \leq q+1$ such that

Since we assume (3) is implied by S if it has less than r reflections, take $I(3)<r$. Then the Deletion Condition says that we may omit two factors

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

Since the collection of relations $s_{1} \ldots s_{r}=1$ in W completely describes W , we will show by induction that
$\left(S \Longrightarrow s_{i_{1}} \ldots s_{i_{k}}=1, k<r\right) \Longrightarrow\left(S \Longrightarrow s_{1} \ldots s_{r}=1\right.$ (1) for every relation of r reflections in W)
Note: $r=2 q$ for $q \in Z$
Note: The base case of $\mathrm{q}=1$ holds since $s_{1} s_{2}=1$ implies that $s_{1}=s_{2}^{-1}$ so $s_{1}=s_{2}$, and realize that $\left(s_{i} s_{i}\right)^{1}=1$
Now rewrite (1) as $s_{1} \ldots s_{q+1}=s_{r} \ldots s_{q+2}$; since I (right side) $=\mathrm{q}-1$, this means I (left side) $=\mathrm{q}+1$
By the Deletion Condition, there are indices $1 \leq i<j \leq q+1$ such that

Since we assume (3) is implied by S if it has less than r reflections, take $I(3)<r$. Then the Deletion Condition says that we may omit two factors

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

Since the collection of relations $s_{1} \ldots s_{r}=1$ in W completely describes W, we will show by induction that
$\left(S \Longrightarrow s_{i_{1}} \ldots s_{i_{k}}=1, k<r\right) \Longrightarrow\left(S \Longrightarrow s_{1} \ldots s_{r}=1(1)\right.$ for every relation of r reflections in W)
Note: $r=2 q$ for $q \in Z$
Note: The base case of $\mathrm{q}=1$ holds since $s_{1} s_{2}=1$ implies that $s_{1}=s_{2}^{-1}$ so $s_{1}=s_{2}$, and realize that $\left(s_{i} s_{i}\right)^{1}=1$
Now rewrite (1) as $s_{1} \ldots s_{q+1}=s_{r} \ldots s_{q+2}$; since $I($ right side $)=q-1$, this means I (left side) $=\mathrm{q}+1$
By the Deletion Condition, there are indices $1 \leq i<j \leq q+1$ such that

$$
\begin{gather*}
s_{i} \ldots s_{j+1}=s_{i+1} \ldots s_{j}(2) \\
s_{i} \ldots s_{j+1} s_{j} \ldots s_{i+1}=1 \tag{3}
\end{gather*}
$$

Since we assume (3) is implied by S if it has less than r reflections, take $I(3)<r$.

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

Since the collection of relations $s_{1} \ldots s_{r}=1$ in W completely describes W , we will show by induction that
$\left(S \Longrightarrow s_{i_{1}} \ldots s_{i_{k}}=1, k<r\right) \Longrightarrow\left(S \Longrightarrow s_{1} \ldots s_{r}=1(1)\right.$ for every relation of r reflections in W)
Note: $r=2 q$ for $q \in Z$
Note: The base case of $\mathrm{q}=1$ holds since $s_{1} s_{2}=1$ implies that $s_{1}=s_{2}^{-1}$ so $s_{1}=s_{2}$, and realize that $\left(s_{i} s_{i}\right)^{1}=1$
Now rewrite (1) as $s_{1} \ldots s_{q+1}=s_{r} \ldots s_{q+2}$; since $I($ right side $)=q-1$, this means I(left side) $=q+1$
By the Deletion Condition, there are indices $1 \leq i<j \leq q+1$ such that

$$
\begin{gather*}
s_{i} \ldots s_{j+1}=s_{i+1} \ldots s_{j}(2) \\
s_{i} \ldots s_{j+1} s_{j} \ldots s_{i+1}=1 \tag{3}
\end{gather*}
$$

Since we assume (3) is implied by S if it has less than r reflections, take $I(3)<r$. Then the Deletion Condition says that we may omit two factors

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

By our induction hypothesis, we can substitute (2) into (1) and we get
$s_{1} \ldots s_{i} s_{i+1} \ldots s_{j-1} s_{j} s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i}\left(s_{i} \ldots s_{j-1}\right) s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i} \ldots s_{j} \ldots s_{r}=1$ which is our desired conclusion
Thus we are done if (3) has less than r reflections If however (3) has precisely r reflections, say,
$s_{1} \ldots s_{a}=s_{2} \ldots s_{a+1} \longrightarrow s_{1} \ldots s_{a} s_{a+1} \ldots s_{2}=1$ (4), we can rearrange (1) so that
$s_{1} \ldots s_{r}=1$ becomes $s_{2} \ldots s_{r} s_{1}=s_{1} s_{2} \ldots s_{q+1} \ldots s_{r} s_{1}=1$
and then we rearrange this new version of (1) to $s_{2} \ldots s_{q+2}=s_{1} s_{r} \ldots s_{q+3}$
We can then repeat the exact argument from before and we will reach a successful conclusion except in case $s_{2} \ldots s_{a+1}=s_{3} \ldots s_{a+2}$ (5)

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

By our induction hypothesis, we can substitute (2) into (1) and we get
$s_{1} \ldots s_{i} s_{i+1} \ldots s_{j-1} s_{j} s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i}\left(s_{i} \ldots s_{j-1}\right) s_{j+1} \ldots s_{r}=s_{1} \ldots s_{j} \ldots s_{j} \ldots s_{r}=1$ which is our desired conclusion
Thus we are done if (3) has less than reflections
If however (3) has precisely r reflections, say,
$s_{1} \ldots s_{q}=s_{2} \ldots s_{q+1} \longrightarrow s_{1} \ldots s_{q} s_{q+1} \ldots s_{2}=1$ (4), we can rearrange (1) so that
$s_{1} \ldots s_{r}=1$ becomes $s_{2} \ldots s_{r} s_{1}=s_{1} s_{2} \ldots s_{q+1} \ldots s_{r} s_{1}=1$
and then we rearrange this new version of (1) to
$s_{2} \ldots s_{a+2}=s_{1} s_{r} \ldots s_{a+3}$
We can then repeat the exact argument from before and we will reach a
successful conclusion except in case $s_{2} \ldots s_{q+1}=s_{3} \ldots s_{q+2}$ (5)

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

By our induction hypothesis, we can substitute (2) into (1) and we get
$s_{1} \ldots s_{i} s_{i+1} \ldots s_{j-1} s_{j} s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i}\left(s_{i} \ldots s_{j-1}\right) s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i} \ldots s_{j} \ldots s_{r}=1$ which is our desired conclusion
Thus we are done if (3) has less than r reflections If however (3) has precisely r reflections, say,
$s_{1} \ldots s_{q}=s_{2} \ldots s_{q+1} \longrightarrow s_{1} \ldots s_{q} s_{q+1} \ldots s_{2}=1$ (4), we can rearrange (1) so that
$s_{1} \ldots s_{r}=1$ becomes $s_{2} \ldots s_{r} s_{1}=s_{1} s_{2} \ldots s_{q+1} \ldots s_{r} s_{1}=1$
and then we rearrange this new version of (1) to
$s_{2} \ldots s_{q+2}=s_{1} s_{r} \ldots s_{q+3}$
We can then repeat the exact argument from before and we will reach a
successful conclusion except in case $s_{2} \ldots s_{q+1}=s_{3} \ldots s_{q+2}$ (5)

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

By our induction hypothesis, we can substitute (2) into (1) and we get
$s_{1} \ldots s_{i} s_{i+1} \ldots s_{j-1} s_{j} s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i}\left(s_{i} \ldots s_{j-1}\right) s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i} \ldots s_{j} \ldots s_{r}=1$ which is our desired conclusion
Thus we are done if (3) has less than r reflections
If however (3) has precisely r reflections, say,
$s_{1} \ldots s_{q}=s_{2} \ldots s_{q+1} \longrightarrow s_{1} \ldots s_{q} s_{q+1} \ldots s_{2}=1$ (4), we can rearrange (1) so that

$$
s_{1} \ldots s_{r}=1 \text { becomes } s_{2} \ldots s_{r} s_{1}=s_{1} s_{2} \ldots s_{q+1} \ldots s_{r} s_{1}=1
$$

and then we rearrange this new version of (1) to
$s_{2} \ldots s_{q+2}=s_{1} s_{r} \ldots s_{q+3}$
We can then repeat the exact argument from before and we will reach a
successful conclusion except in case $s_{2} \ldots s_{q+1}=s_{3} \ldots s_{q+2}$ (5)

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \Delta\right\}$

Proof.

By our induction hypothesis, we can substitute (2) into (1) and we get
$s_{1} \ldots s_{i} s_{i+1} \ldots s_{j-1} s_{j} s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i}\left(s_{i} \ldots s_{j-1}\right) s_{j+1} \ldots s_{r}=s_{1} \ldots s_{i} \ldots s_{j} \ldots s_{r}=1$ which is our desired conclusion
Thus we are done if (3) has less than r reflections
If however (3) has precisely r reflections, say,
$s_{1} \ldots s_{q}=s_{2} \ldots s_{q+1} \longrightarrow s_{1} \ldots s_{q} s_{q+1} \ldots s_{2}=1$ (4), we can rearrange (1) so
that
$s_{1} \ldots s_{r}=1$ becomes $s_{2} \ldots s_{r} s_{1}=s_{1} s_{2} \ldots s_{q+1} \ldots s_{r} s_{1}=1$
and then we rearrange this new version of (1) to
$s_{2} \ldots s_{q+2}=s_{1} s_{r} \ldots s_{q+3}$
We can then repeat the exact argument from before and we will reach a successful conclusion except in case $s_{2} \ldots s_{q+1}=s_{3} \ldots s_{q+2}$ (5)

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

If it happens that $s_{2} \ldots s_{q+1}=s_{3} \ldots s_{q+2}$ (5) and $s_{2} \ldots s_{q+1}=s_{1} \ldots s_{q}$ (4), then we will try a different strategy

$$
\begin{aligned}
& \text { We will rewrite (5) as } \\
& \qquad s_{3}\left(s_{2} \ldots s_{q+1}\right) s_{q+2} \ldots s_{4}=1
\end{aligned}
$$

and then rearrange it as

$$
S_{3} S_{2} \ldots S_{q+1}=s_{4} \ldots s_{q+2}
$$

We will now repeat the argument from above to show that (5) is a consequence of S by induction, and then substitute (5) into $s_{1} \ldots s_{r}=1(1)$ to show that (1) is a consequence of S We find that the only time this fails is when $s_{3} s_{2} \ldots s_{q}=s_{2} \ldots s_{q+1}$ But then $s_{1}=s_{3}$ as before, and we are still at an impasse Thus we keep on changing indices in (1) like before and continue in the way just described.

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

If it happens that $s_{2} \ldots s_{q+1}=s_{3} \ldots s_{q+2}$ (5) and $s_{2} \ldots s_{q+1}=s_{1} \ldots s_{q}$ (4), then we will try a different strategy
We will rewrite (5) as

$$
s_{3}\left(s_{2} \ldots s_{q+1}\right) s_{q+2} \ldots s_{4}=1
$$

and then rearrange it as

$$
s_{3} s_{2} \ldots s_{q+1}=s_{4} \ldots s_{q+2}
$$

We will now repeat the argument from above to show that (5) is a consequence of S by induction, and then substitute (5) into $s_{1} \ldots s_{r}=1(1)$ to show that (1) is a consequence of S We find that the only time this fails is when $s_{3} s_{2} \ldots s_{q}=s_{2} \ldots s_{q+1}$ But then $s_{1}=s_{3}$ as before, and we are still at an impasse Thus we keep on changing indices in (1) like before and continue in the way just described.

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

If it happens that $s_{2} \ldots s_{q+1}=s_{3} \ldots s_{q+2}$ (5) and $s_{2} \ldots s_{q+1}=s_{1} \ldots s_{q}$ (4), then we will try a different strategy
We will rewrite (5) as

$$
s_{3}\left(s_{2} \ldots s_{q+1}\right) s_{q+2} \ldots s_{4}=1
$$

and then rearrange it as

$$
s_{3} s_{2} \ldots s_{q+1}=s_{4} \ldots s_{q+2}
$$

We will now repeat the argument from above to show that (5) is a consequence of S by induction, and then substitute (5) into $s_{1} \ldots s_{r}=1$ (1) to show that (1) is a consequence of S We find that the only time this fails is when $s_{3} s_{2} \ldots s_{q}=s_{2} \ldots s_{q+1}$ But then $s_{1}=s_{3}$ as before, and we are still at an impasse Thus we keep on changing indices in (1) like before and continue in the way just described

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

If it happens that $s_{2} \ldots s_{q+1}=s_{3} \ldots s_{q+2}$ (5) and $s_{2} \ldots s_{q+1}=s_{1} \ldots s_{q}$ (4), then we will try a different strategy
We will rewrite (5) as

$$
s_{3}\left(s_{2} \ldots s_{q+1}\right) s_{q+2} \ldots s_{4}=1
$$

and then rearrange it as

$$
s_{3} s_{2} \ldots s_{q+1}=s_{4} \ldots s_{q+2}
$$

We will now repeat the argument from above to show that (5) is a consequence of S by induction, and then substitute (5) into $s_{1} \ldots s_{r}=1(1)$ to show that (1) is a consequence of S We find that the only time this fails is when $s_{3} s_{2} \ldots s_{q}=s_{2} \ldots s_{q+1}$
But then $s_{1}=s_{3}$ as before, and we are still at an impasse
Thus we keep on changing indices in (1) like before and continue in the way just described.

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

If it happens that $s_{2} \ldots s_{q+1}=s_{3} \ldots s_{q+2}$ (5) and $s_{2} \ldots s_{q+1}=s_{1} \ldots s_{q}$ (4), then we will try a different strategy
We will rewrite (5) as

$$
s_{3}\left(s_{2} \ldots s_{q+1}\right) s_{q+2} \ldots s_{4}=1
$$

and then rearrange it as

$$
s_{3} s_{2} \ldots s_{q+1}=s_{4} \ldots s_{q+2}
$$

We will now repeat the argument from above to show that (5) is a consequence of S by induction, and then substitute (5) into $s_{1} \ldots s_{r}=1(1)$ to show that (1) is a consequence of S We find that the only time this fails is when $s_{3} s_{2} \ldots s_{q}=s_{2} \ldots s_{q+1}$
But then $s_{1}=s_{3}$ as before, and we are still at an impasse
Thus we keep on changing indices in (1) like before and continue in the way just described.

Coxeter Groups $S:=\left\{s_{k}, k \in \Delta \mid\left(s_{a} s_{b}\right)^{m(a, b)}=1, a, b \in \triangle\right\}$

Proof.

We find that a successful conclusion is reached except in case

$$
\begin{aligned}
& s_{1}=s_{3}=\ldots=s_{r-1} \text { and } \\
& s_{2}=s_{4}=\ldots=s_{r},
\end{aligned}
$$

But then we may rewrite (1) as
$s_{a} s_{B} s_{a} s_{B} \ldots=1$, which is given by S trivially

Parabolic Subgroups

Definition

Fix a simple system Δ in root system R, and let S be the set of simple reflections in W
Take $I \subset S$. Then the reflection group associated with I, W_{l}, is called a Parabolic Subgroup of W and Δ_{I} is a its associated simple system

Theorem

For a fixed simple system Δ and a corresponding set S of simple reflections. Let $I \subset S$ and define R_{l} to be the root system corresponding to the reflections of I

Define $W^{\prime}:=\{w \in W \mid I(w s)>I(w) \forall s \in I\}$ Given $w \in W$, there is a unique $u \in W^{\prime}$ and a unique $v \in W_{1}$ such that w=uv
Their lengths satisfy $I(w)=I(u)+I(v)$
u is the unique element of smallest length in the coset wWI

Parabolic Subgroups

Definition

Fix a simple system Δ in root system R, and let S be the set of simple reflections in W
Take $I \subset S$. Then the reflection group associated with I, W_{I}, is called a Parabolic Subgroup of W and $\Delta_{/}$is a its associated simple system

Theorem

For a fixed simple system \triangle and a corresponding set S of simple reflections. Let $I \subset S$ and define $R_{\text {I }}$ to be the root system corresponding to the reflections of I

Define $W^{\prime}:=\{w \in W \mid I(w s)>I(w) \forall s \in I\}$ Given $w \in W$, there is a unique $u \in W^{\prime}$ and a unique $v \in W_{1}$ such that $w=u v$
Their lengths satisfy $I(w)=I(u)+I(v)$
u is the unique element of smallest length in the coset wWI

Parabolic Subgroups

Definition

Fix a simple system Δ in root system R, and let S be the set of simple reflections in W
Take $I \subset S$. Then the reflection group associated with I, W_{l}, is called a Parabolic Subgroup of W and Δ_{I} is a its associated simple system

Theorem

For a fixed simple system Δ and a corresponding set S of simple reflections. Let $I \subset S$ and define $R_{\text {I }}$ to be the root system corresponding to the reflections of I

Define $W^{\prime}:=\{w \in W \mid I(w s)>I(w) \forall s \in I\}$ Given $w \in W$, there is a unique $u \in W^{\prime}$ and a unique $v \in W_{1}$ such that $W=u v$ Their lengths satisfy $I(w)=I(u)+I(v)$ u is the unique element of smallest length in the coset wWI

Parabolic Subgroups

Definition

Fix a simple system Δ in root system R, and let S be the set of simple reflections in W
Take $I \subset S$. Then the reflection group associated with I, W_{l}, is called a Parabolic Subgroup of W and Δ_{I} is a its associated simple system

Theorem

For a fixed simple system Δ and a corresponding set S of simple reflections. Let $I \subset S$ and define R_{I} to be the root system corresponding to the reflections of I

Define $W^{\prime}:=\{w \in W \mid I(w s)>I(w) \forall s \in I\}$ Given $w \in W$, there is a unique $u \in W^{\prime}$ and a unique $v \in W_{1}$ such that w=uv Their lengths satisfy $I(w)=I(u)+I(v)$ u is the unique element of smallest length in the coset wWI

Parabolic Subgroups

Definition

Fix a simple system Δ in root system R, and let S be the set of simple reflections in W
Take $I \subset S$. Then the reflection group associated with I, W_{l}, is called a Parabolic Subgroup of W and Δ_{I} is a its associated simple system

Theorem

For a fixed simple system Δ and a corresponding set S of simple reflections. Let $I \subset S$ and define R_{I} to be the root system corresponding to the reflections of I

Define $W^{\prime}:=\{w \in W \mid I(w s)>I(w) \forall s \in I\}$.
Given $w \in W$, there is a unique $\in W^{\prime}$ and a unique $v \in W_{I}$ such that
w=uv
Their lengths satisfy $I(w)=I(u)+I(v)$
$\begin{aligned} & u \\ & \text { is the unique element of smallest length in the coset } w W_{I} \\ & \text { Raj Gandhi (University of Ottawa) }\end{aligned} \quad$ Finite Reflection Groups

Parabolic Subgroups

Definition

Fix a simple system Δ in root system R, and let S be the set of simple reflections in W
Take $I \subset S$. Then the reflection group associated with I, W_{l}, is called a Parabolic Subgroup of W and Δ_{I} is a its associated simple system

Theorem

For a fixed simple system Δ and a corresponding set S of simple reflections. Let $I \subset S$ and define R_{I} to be the root system corresponding to the reflections of I

Define $W^{\prime}:=\{w \in W \mid I(w s)>I(w) \forall s \in I\}$.
Given $w \in W$, there is a unique $u \in W^{\prime}$ and a unique $v \in W_{l}$ such that $w=u v$
Their lengths satisfy $I(w)=I(u)+I(v)$
u is the unique element of smallest length in the coset $w W_{I}$

Parabolic Subgroups

Definition

Fix a simple system Δ in root system R, and let S be the set of simple reflections in W
Take $I \subset S$. Then the reflection group associated with I, W_{l}, is called a Parabolic Subgroup of W and Δ_{I} is a its associated simple system

Theorem

For a fixed simple system Δ and a corresponding set S of simple reflections. Let $I \subset S$ and define R_{I} to be the root system corresponding to the reflections of I

Define $W^{\prime}:=\{w \in W \mid I(w s)>I(w) \forall s \in I\}$.
Given $w \in W$, there is a unique $u \in W^{\prime}$ and a unique $v \in W_{l}$ such that $w=u v$
Their lengths satisfy $I(w)=I(u)+I(v)$
u is the unique element of smallest length in the coset $w W_{\text {I }}$

Parabolic Subgroups

Definition

Fix a simple system Δ in root system R, and let S be the set of simple reflections in W
Take $I \subset S$. Then the reflection group associated with I, W_{l}, is called a Parabolic Subgroup of W and Δ_{I} is a its associated simple system

Theorem

For a fixed simple system Δ and a corresponding set S of simple reflections. Let $I \subset S$ and define R_{I} to be the root system corresponding to the reflections of I

Define $W^{\prime}:=\{w \in W \mid I(w s)>I(w) \forall s \in I\}$.
Given $w \in W$, there is a unique $u \in W^{\prime}$ and a unique $v \in W_{l}$ such that $w=u v$
Their lengths satisfy $I(w)=I(u)+I(v)$
u is the unique element of smallest length in the coset $w W_{l}$

Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced.
To build u, we take w and remove every element of W_{I} that we can from w to create a reduced expression, which also implies that
$I(u s)>I(s) \forall s \in W_{l}$. Thus $u \in W^{\prime}$

We know $I(w) \leq I(u)+I(v)$, but u, v are both reduced
Removing a factor from u yields an element smaller than u, and v is reduced by assumption
Also, u and v come from disjoint subsets of W
Therefore, $I(w)=I(u v)=I(u)+I(v)$

If u is not unique, $\exists \mathrm{u}^{\prime}$ such that $u^{\prime}>u$
But $u^{\prime}>u \Longrightarrow \exists s_{i} \in w W_{I}$ such that $I\left(u^{\prime} s\right)<I\left(u^{\prime}\right)$ contradicting $u^{\prime} \in W^{\prime}$, so u^{\prime} cannot exist

Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced. To build u, we take w and remove every element of W_{l} that we can from w to create a reduced expression, which also implies that

```
I(us)>I(s)\foralls\in\mp@subsup{W}{I}{}.\mathrm{ Thus }u\in\mp@subsup{W}{}{\prime}
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption
Also, u and v come from disjoint subsets of W
Therefore,}I(w)=I(uv)=I(u)+I(v
If u}\mathrm{ is not unique, }\exists\textrm{u}\mathrm{ ' such that }\mp@subsup{u}{}{\prime}>
But \mp@subsup{u}{}{\prime}>u\Longrightarrow\exists\mp@subsup{s}{i}{}\inw\mp@subsup{W}{l}{}\mathrm{ such that I(u's)<I(u') contradicting}
u'}\in\mp@subsup{W}{}{\prime}\mathrm{ , so }\mp@subsup{u}{}{\prime}\mathrm{ cannot exist
```


Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced. To build u, we take w and remove every element of W_{l} that we can from w to create a reduced expression, which also implies that $I(u s)>I(s) \forall s \in W_{I}$.

We know $I(w) \leq I(u)+I(v)$, but u, v are both reduced:
Removing a factor from u yields an element smaller than u, and v is reduced by assumption
Also, u and v come from disjoint subsets of W
Therefore, $I(w)=I(u v)=I(u)+I(v)$

If u is not unique, $\exists \mathrm{u}^{\prime}$ such that $u^{\prime}>u$
But $u^{\prime}>u \Longrightarrow \exists s_{i} \in w W_{I}$ such that $I\left(u^{\prime} s\right)<I\left(u^{\prime}\right)$ contradicting
$u^{\prime} \in W^{\prime}$, so u^{\prime} cannot exist

Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced. To build u, we take w and remove every element of W_{l} that we can from w to create a reduced expression, which also implies that $I(u s)>I(s) \forall s \in W_{l}$. Thus $u \in W^{\prime}$

We know $I(w) \leq I(u)+I(v)$, but u, v are both reduced:
Removing a factor from u yields an element smaller than u, and v is reduced by assumption
Also, u and v come from disjoint subsets of W
Therefore, $I(w)=I(u v)=I(u)+I(v)$

If u is not unique, $\exists \mathrm{u}^{\prime}$ such that $u^{\prime}>u$
But $u^{\prime}>u \Longrightarrow \exists s_{i} \in w W_{I}$ such that $I\left(u^{\prime} s\right)<I\left(u^{\prime}\right)$ contradicting
$u^{\prime} \in W^{\prime}$, so u^{\prime} cannot exist

Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced.
To build u, we take w and remove every element of W_{l} that we can from w to create a reduced expression, which also implies that $I(u s)>I(s) \forall s \in W_{l}$. Thus $u \in W^{\prime}$

We know $I(w) \leq I(u)+I(v)$, but u, v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption
Also, u and v come from disjoint subsets of W
Therefore, $I(w)=I(u v)=I(u)+I(v)$

If u is not unique, $\exists u^{\prime}$ such that $u^{\prime}>u$
But $u^{\prime}>u \Longrightarrow \exists s, \in M M /$ such that $I\left(u^{\prime} S\right)<I\left(u^{\prime}\right)$ contradicting
$u^{\prime} \in W^{\prime}$, so u^{\prime} cannot exist

Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced.
To build u, we take w and remove every element of W_{l} that we can from w to create a reduced expression, which also implies that $I(u s)>I(s) \forall s \in W_{l}$. Thus $u \in W^{\prime}$

We know $I(w) \leq I(u)+I(v)$, but u, v are both reduced:
Removing a factor from u yields an element smaller than u,and v is reduced by assumption.

Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced.
To build u, we take w and remove every element of W_{l} that we can from w to create a reduced expression, which also implies that $I(u s)>I(s) \forall s \in W_{l}$. Thus $u \in W^{\prime}$

We know $I(w) \leq I(u)+I(v)$, but u, v are both reduced:
Removing a factor from u yields an element smaller than u,and v is reduced by assumption.
Also, u and v come from disjoint subsets of W
\square

Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced.
To build u, we take w and remove every element of W_{l} that we can from w to create a reduced expression, which also implies that $I(u s)>I(s) \forall s \in W_{l}$. Thus $u \in W^{\prime}$

We know $I(w) \leq I(u)+I(v)$, but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, $I(w)=I(u v)=I(u)+I(v)$

Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced.
To build u, we take w and remove every element of W_{l} that we can from w to create a reduced expression, which also implies that $I(u s)>I(s) \forall s \in W_{l}$. Thus $u \in W^{\prime}$

We know $I(w) \leq I(u)+I(v)$, but u, v are both reduced:
Removing a factor from u yields an element smaller than u,and v is reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, $I(w)=I(u v)=I(u)+I(v)$
If u is not unique, $\exists \mathrm{u}$ ' such that $u^{\prime}>u$
But $u^{\prime}>u \Longrightarrow \exists s_{i} \in w W_{I}$ such that $I\left(u^{\prime} s\right)<I\left(u^{\prime}\right)$ contradicting
$u^{\prime} \in W^{\prime}$, so u^{\prime} cannot exist

Parabolic Subgroups

Proof.

Given a reduced $w \in W$, choose a representative of $w W_{l}$ called u of smallest length and choose $v \in W_{l}$ such that $w=u v$ and v is reduced.
To build u, we take w and remove every element of W_{l} that we can from w to create a reduced expression, which also implies that $I(u s)>I(s) \forall s \in W_{l}$. Thus $u \in W^{\prime}$

We know $I(w) \leq I(u)+I(v)$, but u, v are both reduced:
Removing a factor from u yields an element smaller than u,and v is reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, $I(w)=I(u v)=I(u)+I(v)$
If u is not unique, $\exists \mathrm{u}^{\prime}$ such that $u^{\prime}>u$
But $u^{\prime}>u \Longrightarrow \exists s_{i} \in w W_{l}$ such that $I\left(u^{\prime} s\right)<I\left(u^{\prime}\right)$ contradicting $u^{\prime} \in W^{\prime}$, so u^{\prime} cannot exist

Poincare Polynomials

Definition

A Poincare Polynomial is a polynomial of indeterminate t that is a bookkeeper for the elements of a reflection group W

Define a sequence

$$
a_{n}:=\operatorname{Card}\{w \in W \|(w)=n\}
$$

Then the Poincare Polynomial for W is

Example

Take the reflection group $W=S_{3}$
We see that $W(t)=1+2 t+2 t^{2}+t^{3}$ since $W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$

Poincare Polynomials

Definition

A Poincare Polynomial is a polynomial of indeterminate t that is a bookkeeper for the elements of a reflection group W

Define a sequence

$$
a_{n}:=\operatorname{Card}\{w \in W \mid I(w)=n\}
$$

Then the Poincare Polynomial for W is

Example

Take the reflection group $W=S_{3}$
We see that $W(t)=1+2 t+2 t^{2}+t^{3}$ since $W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$

Poincare Polynomials

Definition

A Poincare Polynomial is a polynomial of indeterminate t that is a bookkeeper for the elements of a reflection group W

Define a sequence

$$
a_{n}:=\operatorname{Card}\{w \in W \mid I(w)=n\}
$$

Then the Poincare Polynomial for W is

$$
W(\mathrm{t}):=\sum_{n \geq 0} a_{n} t^{n}=\sum_{w \in W} t^{\prime(w)}
$$

Example

Take the reflection group $W=S_{3}$
We see that $W(t)=1+2 t+2 t^{2}+t^{3}$ since $W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$

Poincare Polynomials

Definition

A Poincare Polynomial is a polynomial of indeterminate t that is a bookkeeper for the elements of a reflection group W

Define a sequence

$$
a_{n}:=\operatorname{Card}\{w \in W \mid I(w)=n\}
$$

Then the Poincare Polynomial for W is

$$
W(t):=\sum_{n \geq 0} a_{n} t^{n}=\sum_{w \in W} t^{\prime(w)}
$$

Example

Take the reflection group $W=S_{3}$

Poincare Polynomials

Definition

A Poincare Polynomial is a polynomial of indeterminate t that is a bookkeeper for the elements of a reflection group W

Define a sequence

$$
a_{n}:=\operatorname{Card}\{w \in W \mid I(w)=n\}
$$

Then the Poincare Polynomial for W is

$$
W(\mathrm{t}):=\sum_{n \geq 0} a_{n} t^{n}=\sum_{w \in W} t^{\prime(w)}
$$

Example

Take the reflection group $W=S_{3}$
We see that $W(t)=1+2 t+2 t^{2}+t^{3}$ since
$W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$

Poincare Polynomials

Theorem

Since $W(t)=W^{\prime}(t) W_{l}(t)$, we can show that

$$
\sum_{I \subset S}(-1)^{\prime} \frac{W(t)}{W_{l}(t)}=\sum_{I \subset S}(-1)^{\prime} W^{\prime}(t)=t^{N}
$$

where $N=I\left(w_{0}\right)$, the longest element of $W\left(\right.$ ie: $\left.I\left(w_{0} s\right) \leq I\left(w_{0}\right) \forall s \in W\right)$

Example

The theorem can be proven combinatorically,but let us see how it works for S_{3},
$W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$
$I=\left\{s_{1}\right\} \Longrightarrow$ term $1:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{2}\right\} \Longrightarrow$ term $2:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{1}, s_{2}\right\} \Longrightarrow$ term3: $(-1)^{2}\left(t^{0}\right)$
$I=\phi \Longrightarrow$ term $4:(-1)^{0}\left(t^{0}+2 t^{1}+2 t^{2}+t^{3}\right)$

Adding these 4 terms together equals t^{3} as desired

Poincare Polynomials

Theorem

Since $W(t)=W^{\prime}(t) W_{l}(t)$, we can show that

$$
\sum_{I \subset S}(-1)^{\prime} \frac{W(t)}{W_{l}(t)}=\sum_{l \subset S}(-1)^{\prime} W^{\prime}(t)=t^{N}
$$

where $N=I\left(w_{0}\right)$, the longest element of $W\left(i e: I\left(w_{0} s\right) \leq I\left(w_{0}\right) \forall s \in W\right)$

```
Example
The theorem can be proven combinatorically,but let us see how it works
for }\mp@subsup{S}{3}{}\mathrm{ ,
W={e,\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\mp@subsup{s}{1}{}\mp@subsup{s}{2}{},\mp@subsup{s}{2}{}\mp@subsup{s}{1}{},\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}\mp@subsup{s}{1}{}}
I={s1}\Longrightarrow term1:(-1) 1}(\mp@subsup{t}{}{0}+\mp@subsup{t}{}{1}+\mp@subsup{t}{}{2}
I={s2}\Longrightarrow term2 : (-1) 1}(\mp@subsup{t}{}{0}+\mp@subsup{t}{}{1}+\mp@subsup{t}{}{2}
I={s, s, s } cterm3:(-1)2}\mp@subsup{)}{}{2}(\mp@subsup{t}{}{0}
I=\phi\Longrightarrowterm4 : (-1)0}(\mp@subsup{t}{}{0}+2\mp@subsup{t}{}{1}+2\mp@subsup{t}{}{2}+\mp@subsup{t}{}{3}
```


Adding these 4 terms together equals t^{3} as desired

Poincare Polynomials

Theorem

Since $W(t)=W^{\prime}(t) W_{l}(t)$, we can show that

$$
\sum_{l \subset S}(-1)^{\prime} \frac{W(t)}{W_{l}(t)}=\sum_{l \subset S}(-1)^{\prime} W^{\prime}(t)=t^{N}
$$

where $N=I\left(w_{0}\right)$, the longest element of W (ie: $\left.l\left(w_{0} s\right) \leq I\left(w_{0}\right) \forall s \in W\right)$

Example

The theorem can be proven combinatorically,but let us see how it works $W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$ $\begin{aligned} I & =\left\{s_{1}\right\} \Longrightarrow \operatorname{term} 1:(-1)^{1}\left(t^{0}+t+t^{2}\right) \\ I & =\left\{s_{2}\right\} \Longrightarrow \operatorname{term} 2:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right) \\ & =\left\{s_{1}, s_{2}\right\} \Longrightarrow \operatorname{term} 3:(-1)^{2}\left(t^{0}\right) \\ & =\phi \Longrightarrow \operatorname{term} 4:(-1)^{0}\left(t^{0}+2 t^{1}+2 t^{2}+t^{3}\right)\end{aligned}$ Adding these 4 terms together equals t^{3} as desired

Poincare Polynomials

Theorem

Since $W(t)=W^{\prime}(t) W_{l}(t)$, we can show that

$$
\sum_{I \subset S}(-1)^{\prime} \frac{W(t)}{W_{l}(t)}=\sum_{I \subset S}(-1)^{\prime} W^{\prime}(t)=t^{N}
$$

where $N=I\left(w_{0}\right)$, the longest element of W (ie: $\left.l\left(w_{0} s\right) \leq I\left(w_{0}\right) \forall s \in W\right)$

Example

The theorem can be proven combinatorically,but let us see how it works $W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$ $I=\left\{s_{1}\right\} \Longrightarrow \operatorname{term} 1:(-1)^{1}\left(t^{0}+t+t^{2}\right)$
$I=\left\{s_{2}\right\} \Longrightarrow \operatorname{term} 2:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{1}, s_{2}\right\} \Longrightarrow \operatorname{term} 3:(-1)^{2}\left(t^{0}\right)$
$I=\phi \Longrightarrow \operatorname{term} 4:(-1)^{0}\left(t^{0}+2 t^{1}+2 t^{2}+t^{3}\right)$ Adding these 4 terms together equals t^{3} as desired

Poincare Polynomials

Theorem

Since $W(t)=W^{\prime}(t) W_{l}(t)$, we can show that

$$
\sum_{I \subset S}(-1)^{\prime} \frac{W(t)}{W_{l}(t)}=\sum_{I \subset S}(-1)^{\prime} W^{\prime}(t)=t^{N}
$$

where $N=I\left(w_{0}\right)$, the longest element of W (ie: $\left.l\left(w_{0} s\right) \leq I\left(w_{0}\right) \forall s \in W\right)$

Example

The theorem can be proven combinatorically,but let us see how it works for S_{3},
$W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$
$I=\left\{s_{1}\right\} \Longrightarrow$ term $1:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$

Adding these 4 terms together equals t^{3} as desired

Poincare Polynomials

Theorem

Since $W(t)=W^{\prime}(t) W_{l}(t)$, we can show that

$$
\sum_{I \subset S}(-1)^{\prime} \frac{W(t)}{W_{l}(t)}=\sum_{I \subset S}(-1)^{\prime} W^{\prime}(t)=t^{N}
$$

where $N=I\left(w_{0}\right)$, the longest element of $W\left(i e: I\left(w_{0} s\right) \leq I\left(w_{0}\right) \forall s \in W\right)$

Example

The theorem can be proven combinatorically,but let us see how it works for S_{3},
$W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$
$I=\left\{s_{1}\right\} \Longrightarrow$ term $1:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{2}\right\} \Longrightarrow$ term $2:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{1}, s_{2}\right\} \Longrightarrow$ term3:(-1)${ }^{2}\left(t^{0}\right)$
$I=\phi \Longrightarrow$ term $4:(-1)^{0}\left(t^{0}+2 t^{1}+2 t^{2}+t^{3}\right)$
Adding these 4 terms together equals t^{3} as desired

Poincare Polynomials

Theorem

Since $W(t)=W^{\prime}(t) W_{l}(t)$, we can show that

$$
\sum_{I \subset S}(-1)^{\prime} \frac{W(t)}{W_{l}(t)}=\sum_{I \subset S}(-1)^{\prime} W^{\prime}(t)=t^{N}
$$

where $N=I\left(w_{0}\right)$, the longest element of $W\left(i e: I\left(w_{0} s\right) \leq I\left(w_{0}\right) \forall s \in W\right)$

Example

The theorem can be proven combinatorically,but let us see how it works for S_{3},
$W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$
$I=\left\{s_{1}\right\} \Longrightarrow$ term $1:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{2}\right\} \Longrightarrow$ term $2:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{1}, s_{2}\right\} \Longrightarrow$ term $3:(-1)^{2}\left(t^{0}\right)$
$I=\phi \Longrightarrow \operatorname{term} 4:(-1)^{0}\left(t^{0}+2 t^{1}+2 t^{2}+t^{3}\right)$
Adding these 4 terms together equals t^{3} as desired

Poincare Polynomials

Theorem

Since $W(t)=W^{\prime}(t) W_{l}(t)$, we can show that

$$
\sum_{I \subset S}(-1)^{\prime} \frac{W(t)}{W_{l}(t)}=\sum_{I \subset S}(-1)^{\prime} W^{\prime}(t)=t^{N}
$$

where $N=I\left(w_{0}\right)$, the longest element of $W\left(i e: I\left(w_{0} s\right) \leq I\left(w_{0}\right) \forall s \in W\right)$

Example

The theorem can be proven combinatorically,but let us see how it works for S_{3},
$W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$
$I=\left\{s_{1}\right\} \Longrightarrow$ term $1:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{2}\right\} \Longrightarrow$ term $2:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{1}, s_{2}\right\} \Longrightarrow$ term $3:(-1)^{2}\left(t^{0}\right)$
$I=\phi \Longrightarrow$ term $4:(-1)^{0}\left(t^{0}+2 t^{1}+2 t^{2}+t^{3}\right)$
Adding these 4 terms together equals t^{3} as desired

Poincare Polynomials

Theorem

Since $W(t)=W^{\prime}(t) W_{l}(t)$, we can show that

$$
\sum_{I \subset S}(-1)^{\prime} \frac{W(t)}{W_{l}(t)}=\sum_{I \subset S}(-1)^{\prime} W^{\prime}(t)=t^{N}
$$

where $N=I\left(w_{0}\right)$, the longest element of $W\left(i e: I\left(w_{0} s\right) \leq I\left(w_{0}\right) \forall s \in W\right)$

Example

The theorem can be proven combinatorically,but let us see how it works for S_{3},
$W=\left\{e, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}$
$I=\left\{s_{1}\right\} \Longrightarrow$ term $1:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{2}\right\} \Longrightarrow$ term $2:(-1)^{1}\left(t^{0}+t^{1}+t^{2}\right)$
$I=\left\{s_{1}, s_{2}\right\} \Longrightarrow$ term $3:(-1)^{2}\left(t^{0}\right)$
$I=\phi \Longrightarrow$ term $4:(-1)^{0}\left(t^{0}+2 t^{1}+2 t^{2}+t^{3}\right)$
Adding these 4 terms together equals t^{3} as desired

[^0]: Example
 The Dihedral Group of order 4 preserves these eight vectors:
 $\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)$
 If we think of this Dihedral Group as a Reflection Group, these vectors form a root system with associated reflection group W of generators associated with each vector

