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Reflection Groups

Definition

The Reflection of a vector t with respect to a fixed vector a in a real
euclidean space is defined by

sat = t − 2(t,a)
(a,a) a

A Reflection Group, W, is a group that is generated by a set of such
linear operators sa

Example

A Dihedral Group is a group that is generated by the rotations and
reflections a two-dimensional polygon that result in new orientations of the
polygon
The rotations and reflections of an m sided polygon can be achieved by
reflections of the polygon over its diagonals
Thus any Dihedral Group of order 2m can be thought of as a Reflection
Group
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Reflection Groups

Example

Any Symmetric Group can be thought of as a subgroup of the group of
orthogonal matrices

Transposing two basis vectors of an orthogonal matrix is a Reflection
which sends some vector ei − ej to its negative while fixing pointwise every
other vector of the matrix

Every Symmetric Group is also generated by such transpositions

Therefore, every Symmetric Group can also be realized as a Reflection
Group
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Root Systems

A root system R is a set of vectors that obeys the following axioms:

1 R ∩ ca = {a,−a} ∀a ∈ R

2 saR = R ∀a ∈ R

Example

The Dihedral Group of order 4 preserves these eight vectors:
±(1, 0),±(1, 1),±(0, 1),±(−1, 1)

If we think of this Dihedral Group as a Reflection Group, these vectors
form a root system with associated reflection group W of generators
associated with each vector
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Positive and Simple Systems

Definition

A Positive System Π is a partition of the Root System obtained from a
linear combination of an ordered basis of V with strictly positive
coefficients
A Negative System −Π is a partition of the Root System obtained from
a linear combination of an ordered basis of V with with strictly negative
coefficients

R = Π ∪ −Π

A Simple System is a vector space basis for the roots in R
Every root, B, in the Root System can be obtained from some linear
combination of simple roots with coefficients, ai , all of the same sign

B =
∑

i cai ai
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Positive and Simple Systems

How do we know Simple Systems exist?

Proof.

Take a positive system Π in R

Choose a set of roots in Π that are not expressible as a linear combination
of the other roots in Π with strictly positive coefficients

This is a simple system in Π, which implies that simple systems exist

Example

A simple system for the Symmetric Group is the set
S = {ei − ej |i = j + 1, 0 < j < n}
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Positive and Simple Systems

Theorem

(a, b) ≤ 0 ∀a, b ∈ 4

Theorem

Let 4 be a simple system contained in Π. If a ∈ 4, then
sa(Π/{a}) = Π/{a}

Proof.

∃B ∈ Π that can be written as a linear combination of 4 with strictly
positive coefficients

But saB = B − 2(B,a)
(a,a) a = B − 2

∑
k ck (k,a)
(a,a) a > 0,B 6= a, k ∈ 4

If B = a, then saB = saa = −a

Thus the only positive root made negative by sa is a
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Positive and Simple Systems

Theorem

Any two positive systems in R are conjugate under W

Proof.

Take two positive systems, Π and Π ′, in R

If r = Card{Π ∩ −Π ′} and r=0, then Π=−Π ′

If r > 0, then ∃a ∈ Π ′ such that a ∈ −Π .
Thus take a ∈ Π ′ and a /∈ Π so that Card{Π ∩ sa(−Π ′)} = r-1

Continuing this way we furnish an element w such that
Card{Π ∩ w(−Π ′)} = 0
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Properties of Reflection Groups

Theorem

For a fixed simple system 4, W is generated by simple reflections,
sa(a ∈ 4)

Theorem

Given 4, ∀ B ∈ R ∃w ∈W such that wB ∈ 4

Definition

Take w ∈W , where w = si1si2 ...sir
The length of w, defined by Length Function l(w), is the smallest r for
which w exists
Some properties of reflection combinations, ie: ww ′, useful for later proofs
are

1 l(ww ′) ≤ l(w) + l(w ′) since max(l(ww’))=r+r’

2 l(saw) = l(w)± 1
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The length of w, defined by Length Function l(w), is the smallest r for
which w exists
Some properties of reflection combinations, ie: ww ′, useful for later proofs
are
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Application of the Length Function

Given W with an associated root system, the number of positive roots
made negative by w can be characterized by the equation:

n(w) = Card{Π ∩ w−1(−Π)}

From this definition and the properties of the length function, we can
prove that

1 wa > 0 =⇒ n(wsa) = n(w) + 1

2 wa < 0 =⇒ n(wsa) = n(w)− 1

Corollary: Since n(w) can increase by at most 1 for each added generator,
n(w) ≤ r
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Properties of Reflection Groups

Theorem

The Deletion Condition
Fix a simple system 4. Take w = s1...sr with w ∈W as a product of
simple reflections. Suppose n(w) < r . Then there are indices
1 ≤ i < j ≤ r such that

1 ai = (si+1...sj−1)aj

2 si+1...sj = si ...sj−1

3 w = s1...si ...sj ...sr

Proof.

w = s1...si si+1...sj−1sjsj+1...sr = s1...si (si ...sj−1)sj+1...sr =
s1...si ...sj ...sr
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Properties of Reflection Groups

Theorem

If w ∈W is reduced, then n(w) = l(w)

Proof.

We already know n(w) ≤ l(w)

If n(w) < l(w) = r , then by the Deletion Condition, l(w) is equal to a
product of r-2 simple reflections

Since l(w) = r , we have a contradiction, forcing n(w) = l(w)
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Coxeter Groups S := {sk , k ∈ ∆|(sasb)m(a,b) = 1, a, b ∈ 4}

Definition

Fix a simple system ∆ in R with an associated reflection group W.Then a
Coxeter Group S is a group that generates W and is subject only to the
relations

S := {sk , k ∈ ∆|(sasb)m(a,b) = 1, a, b ∈ 4}

where m(a, b) is the order of sasb in W

Big Question: Can every reflection group W be generated by a Coxeter
Group?
Answer: Yes!
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Coxeter Groups S := {sk , k ∈ ∆|(sasb)m(a,b) = 1, a, b ∈ 4}

Proof.

Since the collection of relations s1...sr = 1 in W completely describes W,
we will show by induction that
(S =⇒ si1 ...sik = 1, k < r) =⇒ (S =⇒ s1...sr = 1 (1) for every relation of
r reflections in W )
Note: r = 2q for q ∈ Z
Note: The base case of q=1 holds since s1s2 = 1 implies that s1 = s−1

2 so
s1 = s2, and realize that (si si )

1 = 1
Now rewrite (1) as s1...sq+1 = sr ...sq+2; since l(right side)=q-1, this
means l(left side)=q+1
By the Deletion Condition, there are indices 1 ≤ i < j ≤ q + 1 such that

si ...sj+1 = si+1...sj (2) ⇐⇒
si ...sj+1sj ...si+1 = 1 (3)

Since we assume (3) is implied by S if it has less than r reflections, take
l(3) < r . Then the Deletion Condition says that we may omit two factors
from (1), which is what we will show in the inductions stepRaj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 14 / 21
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Coxeter Groups S := {sk , k ∈ ∆|(sasb)m(a,b) = 1, a, b ∈ 4}

Proof.

By our induction hypothesis, we can substitute (2) into (1) and we get

s1...si si+1...sj−1sjsj+1...sr = s1...si (si ...sj−1)sj+1...sr = s1...si ...sj ...sr = 1
which is our desired conclusion
Thus we are done if (3) has less than r reflections
If however (3) has precisely r reflections, say,
s1...sq = s2...sq+1 −→ s1...sqsq+1...s2 = 1 (4), we can rearrange (1) so
that
s1...sr = 1 becomes s2...sr s1 = s1s2...sq+1...sr s1 = 1
and then we rearrange this new version of (1) to
s2...sq+2 = s1sr ...sq+3

We can then repeat the exact argument from before and we will reach a
successful conclusion except in case s2...sq+1 = s3...sq+2 (5)
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Coxeter Groups S := {sk , k ∈ ∆|(sasb)m(a,b) = 1, a, b ∈ 4}

Proof.

If it happens that s2...sq+1 = s3...sq+2 (5) and s2...sq+1 = s1...sq (4), then
we will try a different strategy
We will rewrite (5) as

s3(s2...sq+1)sq+2...s4 = 1
and then rearrange it as

s3s2...sq+1 = s4...sq+2

We will now repeat the argument from above to show that (5) is a
consequence of S by induction, and then substitute (5) into
s1...sr = 1 (1) to show that (1) is a consequence of S We find that the
only time this fails is when s3s2...sq = s2...sq+1

But then s1 = s3 as before, and we are still at an impasse
Thus we keep on changing indices in (1) like before and continue in the
way just described.
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s3s2...sq+1 = s4...sq+2

We will now repeat the argument from above to show that (5) is a
consequence of S by induction, and then substitute (5) into
s1...sr = 1 (1) to show that (1) is a consequence of S We find that the
only time this fails is when s3s2...sq = s2...sq+1

But then s1 = s3 as before, and we are still at an impasse
Thus we keep on changing indices in (1) like before and continue in the
way just described.
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Coxeter Groups S := {sk , k ∈ ∆|(sasb)m(a,b) = 1, a, b ∈ 4}

Proof.

We find that a successful conclusion is reached except in case
s1 = s3 = ... = sr−1 and
s2 = s4 = ... = sr ,

But then we may rewrite (1) as
sasBsasB ... = 1, which is given by S trivially
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Parabolic Subgroups

Definition

Fix a simple system ∆ in root system R, and let S be the set of simple
reflections in W
Take I ⊂ S . Then the reflection group associated with I, WI , is called a
Parabolic Subgroup of W and ∆I is a its associated simple system

Theorem

For a fixed simple system ∆ and a corresponding set S of simple
reflections. Let I ⊂ S and define RI to be the root system corresponding
to the reflections of I

Define W I := {w ∈W |l(ws) > l(w)∀s ∈ I} .
Given w ∈W, there is a unique u ∈W I and a unique v ∈WI such that
w=uv
Their lengths satisfy l(w)=l(u)+l(v)
u is the unique element of smallest length in the coset wWI
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Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Parabolic Subgroups

Proof.

Given a reduced w ∈W , choose a representative of wWI called u of
smallest length and choose v ∈WI such that w=uv and v is reduced.
To build u, we take w and remove every element of WI that we can from
w to create a reduced expression , which also implies that
l(us) > l(s)∀s ∈WI .Thus u ∈W I

We know l(w) ≤ l(u) + l(v), but u,v are both reduced:
Removing a factor from u yields an element smaller than u,and v is
reduced by assumption.
Also, u and v come from disjoint subsets of W
Therefore, l(w) = l(uv) = l(u) + l(v)

If u is not unique, ∃u’ such that u′ > u
But u′ > u =⇒ ∃si ∈ wWI such that l(u′s) < l(u′) contradicting
u′ ∈W I , so u′ cannot exist

Raj Gandhi (University of Ottawa) Finite Reflection Groups September 8, 2016 19 / 21



Poincare Polynomials

Definition

A Poincare Polynomial is a polynomial of indeterminate t that is a
bookkeeper for the elements of a reflection group W

Define a sequence
an := Card{w ∈W |l(w) = n}

Then the Poincare Polynomial for W is
W(t):=

∑
n≥0 ant

n =
∑

w∈W t l(w)

Example

Take the reflection group W = S3

We see that W (t) = 1 + 2t + 2t2 + t3 since
W = {e, s1, s2, s1s2, s2s1, s1s2s1}
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Poincare Polynomials

Theorem

Since W (t) = W I (t)WI (t), we can show that∑
I⊂S(−1)I W (t)

WI (t) =
∑

I⊂S(−1)IW I (t) = tN ,

where N=l(w0), the longest element of W (ie : l(w0s) ≤ l(w0)∀s ∈W )

Example

The theorem can be proven combinatorically,but let us see how it works
for S3,
W = {e, s1, s2, s1s2, s2s1, s1s2s1}
I = {s1} =⇒ term1 : (−1)1(t0 + t1 + t2)
I = {s2} =⇒ term2 : (−1)1(t0 + t1 + t2)
I = {s1, s2} =⇒ term3 : (−1)2(t0)
I = φ =⇒ term4 : (−1)0(t0 + 2t1 + 2t2 + t3)

Adding these 4 terms together equals t3 as desired
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