The Heisenberg Category

Raj Gandhi

University of Ottawa
August 7, 2018

Category

Definition

A category, C , consists of

- A class of objects, denoted Ob(C)
- A class of morphisms between the objects of \mathcal{C}. If $X, Y \in O b(C)$, then we denote the class of morphisms from X to Y by $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
- We can compose morphisms whenever it makes sense. Composition of f and g is denoted $f \circ g$ (if this makes sense).

Additionally, we impose the following relations:

- (associativity): whenever compositions of morphisms make sense, we have $f \circ(g \circ h)=(f \circ g) \circ h$
- (identity) for any object $x \in \mathcal{C}$, there is a morphism $1_{x}: x \rightarrow x$ such that for any morphism $f: x \rightarrow y$ and $a: a \rightarrow x$ in C. we have $1_{x} \circ g=g$ and $f \circ 1_{x}=f$.

Category

Definition

A category, C , consists of

- A class of objects, denoted Ob(C)
- A class of morphisms between the objects of \mathcal{C}. If $X, Y \in O b(\mathcal{C})$, then we denote the class of morphisms from X to Y by $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
- We can compose morphisms whenever it makes sense. Composition of f and g is denoted $f \circ g$ (if this makes sense).

Additionally, we imnose the following relations:

- (associativity): whenever compositions of morphisms make sense, we have $f \circ(g \circ h)=(f \circ g) \circ h$
- (identity) for any ohiect $x \subset e$, there is a morphism $I_{x}: x \rightarrow x$ such that for any morphism $f: x \rightarrow y$ and $g: a \rightarrow x$ in ϱ, we have $l_{x} \circ g=g$ and $f \circ 1_{x}=f$.

Category

Definition

A category, C , consists of

- A class of objects, denoted Ob(C)
- A class of morphisms between the objects of \mathcal{C}. If $X, Y \in O b(\mathcal{C})$, then we denote the class of morphisms from X to Y by $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
- We can compose morphisms whenever it makes sense. Composition of f and g is denoted $f \circ g$ (if this makes sense).

Additionally, we impose the following relations:

- (associativity): whenever compositions of morphisms make sense, we have $f \circ(q \circ h)=(f \circ q) \circ h$
- (identity) for any object $x \in C$, there is a morphism $I_{x}: x \rightarrow x$ such that for any morphism $f: x \rightarrow y$ and $g: a \rightarrow x$ in \complement, we have $l_{x} \circ g=g$ and $f \circ 1_{x}=f$

Category

Definition

A category, C , consists of

- A class of objects, denoted Ob(C)
- A class of morphisms between the objects of \mathcal{C}. If $X, Y \in O b(\mathcal{C})$, then we denote the class of morphisms from X to Y by $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
- We can compose morphisms whenever it makes sense. Composition of f and g is denoted $f \circ g$ (if this makes sense).
Additionally, we impose the following relations:
- (associativity): whenever compositions of morphisms make sense, we have $f \circ(g \circ h)=(f \circ g) \circ h$
- (identity) for any object $x \in \mathcal{C}$, there is a morphism $1_{x}: x \rightarrow x$ such that for any morphism $f: x \rightarrow y$ and $g: a \rightarrow x$ in \mathcal{C}, we have $1_{x} \circ g=g$ and $f \circ 1_{x}=f$

Category

Definition

A category, C , consists of

- A class of objects, denoted Ob(C)
- A class of morphisms between the objects of \mathcal{C}. If $X, Y \in O b(\mathcal{C})$, then we denote the class of morphisms from X to Y by $\operatorname{Hom}_{\mathcal{C}}(X, Y)$
- We can compose morphisms whenever it makes sense. Composition of f and g is denoted $f \circ g$ (if this makes sense).
Additionally, we impose the following relations:
- (associativity): whenever compositions of morphisms make sense, we have $f \circ(g \circ h)=(f \circ g) \circ h$
- (identity) for any object $x \in \mathcal{C}$, there is a morphism $1_{x}: x \rightarrow x$ such that for any morphism $f: x \rightarrow y$ and $g: a \rightarrow x$ in \mathcal{C}, we have $1_{x} \circ g=g$ and $f \circ 1_{x}=f$.

Example

The category Set is the category whose objects are sets and whose morphisms are functions between sets. Composition of morphisms is defined as the composition of functions.

> Example
> The category \mathbb{k}-Vect is the category whose objects are vector spaces over a fixed field \mathbb{k} and whose morphisms are linear transformations between these vector spaces. Composition of morphisms is defined as composition of linear transformations.

> Example
> The category Ring is the category whose objects are rings and whose morphisms are ring homomorphisms. Composition of morphisms is defined as composition of ring homomorphisms.

Example

The category Set is the category whose objects are sets and whose morphisms are functions between sets. Composition of morphisms is defined as the composition of functions.

Example

The category \mathbb{k}-Vect is the category whose objects are vector spaces over a fixed field \mathbb{k} and whose morphisms are linear transformations between these vector spaces. Composition of morphisms is defined as composition of linear transformations.

Example

The category Set is the category whose objects are sets and whose morphisms are functions between sets. Composition of morphisms is defined as the composition of functions.

Example

The category \mathbb{k}-Vect is the category whose objects are vector spaces over a fixed field \mathbb{k} and whose morphisms are linear transformations between these vector spaces. Composition of morphisms is defined as composition of linear transformations.

Example

The category Ring is the category whose objects are rings and whose morphisms are ring homomorphisms. Composition of morphisms is defined as composition of ring homomorphisms.

Example

The category Set is the category whose objects are sets and whose morphisms are functions between sets. Composition of morphisms is defined as the composition of functions.

Example

The category \mathbb{k}-Vect is the category whose objects are vector spaces over a fixed field \mathbb{k} and whose morphisms are linear transformations between these vector spaces. Composition of morphisms is defined as composition of linear transformations.

Example

The category Ring is the category whose objects are rings and whose morphisms are ring homomorphisms. Composition of morphisms is defined as composition of ring homomorphisms.

Strict \mathbb{k}-Linear Monoidal Category

Definition

A strict monoidal category is a category \mathcal{C} together with

- a bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, and

```
> a unit object 1,
```

such that for all $A, B, C \in O b(C)$,

Definition

Let \mathbb{k} be a commutative ring. A strict \mathbb{k}-linear monoidal category is a strict monoidal category such that

- each morphism space is a \mathbb{k}-module, and
- composition of morphisms is \mathbb{k}-linear.

Strict \mathbb{k}-Linear Monoidal Category

Definition

A strict monoidal category is a category \mathcal{C} together with

- a bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, and
- a unit object $\mathbf{1}$,
such that for all $A, B, C \in O b(C)$,
- $(A \otimes B) \otimes C=A \otimes(B \otimes C)$, and

Definition

Let \mathbb{k} be a commutative ring. A strict \mathbb{k}-linear monoidal category is a strict monoidal category such that

- each morphism space is a \mathbb{k}-module, and
- composition of morphisms is \mathbb{k}-linear.

Strict \mathbb{k}-Linear Monoidal Category

```
Definition
A strict monoidal category is a category \mathcal{C together with}
    - a bifunctor }\otimes:\mathcal{C}\times\mathcal{C}->\mathcal{C}\mathrm{ , and
    - a unit object 1,
such that for all A,B,C\inOb(\mathcal{C),}
    - (A\otimesB)\otimesC=A\otimes(B\otimesC), and
Definition
Let \mathbb{k}\mathrm{ be a commutative ring. A strict k<-linear monoidal category is a}
strict monoidal category such that
    * each morphism space is a \mathbb{k}\mathrm{ -module, and}
    - composition of morphisms is \mathbb{k}\mathrm{ -linear.}
```


Strict \mathbb{k}-Linear Monoidal Category

Definition

A strict monoidal category is a category \mathcal{C} together with

- a bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, and
- a unit object $\mathbf{1}$,
such that for all $A, B, C \in O b(\mathcal{C})$,
- $(A \otimes B) \otimes C=A \otimes(B \otimes C)$, and
- $\mathbf{1} \otimes A=A=A \otimes \mathbf{1}$

Definition

Let \mathbb{k} be a commutative ring. A strict \mathbb{k}-linear monoidal category is a strict monoidal category such that

- each morphism space is a \mathbb{k}-module, and
- composition of morphisms is \mathbb{k}-linear.

Strict Monoidal Categories

Example

The category of sets, Set, is a monoidal category with the Cartesian product as the bifunctor and any one-element set as the unit object.

```
Example
The category of vector spaces over a fixed field \mathbb{k},\mathbb{k}=\mathbf{V}ect, is a monoidal
category with the usual tensor product, and the field \mathbb{k serving as the unit}
object.
```


Example

The category of endofunctors from a category e to itself is a strict monoidal category with composition of functors as the tensor product, and the identity functor as the unit object.

Strict Monoidal Categories

Example

The category of sets, Set, is a monoidal category with the Cartesian product as the bifunctor and any one-element set as the unit object.

Example

The category of vector spaces over a fixed field \mathbb{k}, \mathbb{k}-Vect, is a monoidal category with the usual tensor product, and the field \mathbb{k} serving as the unit object.

```
Example
The category of endofunctors from a category C to itself is a strict
monoidal category with composition of functors as the tensor product,
and the identity functor as the unit object.
```


Strict Monoidal Categories

Example

The category of sets, Set, is a monoidal category with the Cartesian product as the bifunctor and any one-element set as the unit object.

Example

The category of vector spaces over a fixed field \mathbb{k}, \mathbb{k}-Vect, is a monoidal category with the usual tensor product, and the field \mathbb{k} serving as the unit object.

Example

The category of endofunctors from a category \mathcal{C} to itself is a strict monoidal category with composition of functors as the tensor product, and the identity functor as the unit object.

String Diagrams 1

Let \mathcal{C} be a strict monoidal category. We denote a morphism $f: X \rightarrow Y$ in \mathcal{C} by the diagram

$$
\begin{aligned}
& Y \\
& \hat{\phi}^{Y}: X \rightarrow Y . \\
& X
\end{aligned}
$$

The identity on X is given by a morphism

Additionally, we may write morphisms $f: \mathbf{1} \rightarrow X \otimes Y$ and $g: X \otimes Y \rightarrow \mathbf{1}$ as

String Diagrams 1

Let \mathcal{C} be a strict monoidal category. We denote a morphism $f: X \rightarrow Y$ in \mathcal{C} by the diagram

$$
\begin{aligned}
& Y \\
& \hat{\phi}_{X}: X \rightarrow Y . \\
& X
\end{aligned}
$$

The identity on X is given by a morphism

$$
\begin{aligned}
& x \\
& \uparrow_{x}^{x}: x \rightarrow x .
\end{aligned}
$$

Additionally, we may write morphisms $f: \mathbf{1} \rightarrow X \otimes Y$ and $g: X \otimes Y \rightarrow \mathbf{1}$ as

String Diagrams 1

Let \mathcal{C} be a strict monoidal category. We denote a morphism $f: X \rightarrow Y$ in \mathcal{C} by the diagram

$$
\begin{aligned}
& Y \\
& \oint_{X} f: X \rightarrow Y . \\
& X
\end{aligned}
$$

The identity on X is given by a morphism

$$
\uparrow_{X}^{x}: x \rightarrow x .
$$

Additionally, we may write morphisms $f: \mathbf{1} \rightarrow X \otimes Y$ and $g: X \otimes Y \rightarrow \mathbf{1}$ as

$$
\underset{f}{ }: \mathbf{1} \rightarrow X \otimes Y
$$

$$
: X \otimes Y \rightarrow \mathbf{1}
$$

String Diagram 2

We compose morphisms vertically, and we tensor morphisms horizontally. So, if $f: X \rightarrow Y, g: Y \rightarrow Z$, and $h: A \rightarrow B$, we write

Additionally, we may write a morphism $f: X \otimes Y \rightarrow A \otimes B$ as

String Diagram 2

We compose morphisms vertically, and we tensor morphisms horizontally. So, if $f: X \rightarrow Y, g: Y \rightarrow Z$, and $h: A \rightarrow B$, we write

Additionally, we may write a morphism $f: X \otimes Y \rightarrow A \otimes B$ as

Example

Consider a strict \mathbb{k}-linear monoidal category, \mathcal{S}, defined as follows. The objects of \mathcal{S} are generated by a single object, Q_{+}. That is, the objects are $\mathbf{1}, Q_{+}, Q_{+} Q_{+}, \ldots$, where juxtaposition denotes tensor product.
morphisms are generated by
and are subject to the relations

Then
$\operatorname{End}_{\mathcal{S}}\left(Q_{+}^{\otimes n}\right)=\mathbb{k} S_{n}$,
where S_{n} is the symmetric group on n letters.

Example

Consider a strict \mathbb{k}-linear monoidal category, \mathcal{S}, defined as follows. The objects of \mathcal{S} are generated by a single object, Q_{+}. That is, the objects are $\mathbf{1}, Q_{+}, Q_{+} Q_{+}, \ldots$, where juxtaposition denotes tensor product. The morphisms are generated by

$$
: Q_{+} Q_{+} \rightarrow Q_{+} Q_{+}
$$

and are subject to the relations
$\mathcal{K}=\uparrow \uparrow$
(1)

Then
$\operatorname{End}_{S}\left(Q_{+}^{\otimes n}\right)=\mathbb{k} S_{n}$,
where S_{n} is the symmetric group on m letters.

Example

Consider a strict \mathbb{k}-linear monoidal category, \mathcal{S}, defined as follows. The objects of \mathcal{S} are generated by a single object, Q_{+}. That is, the objects are $\mathbf{1}, Q_{+}, Q_{+} Q_{+}, \ldots$, where juxtaposition denotes tensor product. The morphisms are generated by

and are subject to the relations
$K=\uparrow \uparrow$

Then

$$
\operatorname{End}_{\mathcal{S}}\left(Q_{+}^{\otimes n}\right)=\mathbb{k} S_{n},
$$

where S_{n} is the symmetric group on n letters.

The Heisenberg Category

Definition

The category \mathscr{H}^{\prime} is the strict \mathbb{k}-linear monoidal category defined as follows. The objects are generated by objects Q_{+}and Q_{-}, where we use juxtaposition to denote tensor product. For example, $Q_{+} Q_{-}$means $Q_{+} \otimes Q_{-}$. The morphisms are generated by

We let

The morphisms above are subject to certain relations, provided in the

The Heisenberg Category

Definition

The category \mathcal{H}^{\prime} is the strict \mathbb{k}-linear monoidal category defined as follows. The objects are generated by objects Q_{+}and Q_{-}, where we use juxtaposition to denote tensor product. For example, $Q_{+} Q_{-}$means $Q_{+} \otimes Q_{-}$. The morphisms are generated by

$$
\begin{gathered}
\nwarrow: Q_{+} Q_{+} \rightarrow Q_{+} Q_{+}, \bigcup: \mathbf{1} \rightarrow Q_{-} Q_{+} \\
\downarrow: Q_{+} Q_{-} \rightarrow \mathbf{1} \uparrow: \mathbf{1} \rightarrow Q_{+} Q_{-}, \curvearrowleft: Q_{-} Q_{+} \rightarrow \mathbf{1} .
\end{gathered}
$$

The Heisenberg Category

Definition

The category \mathcal{H}^{\prime} is the strict \mathbb{k}-linear monoidal category defined as follows. The objects are generated by objects Q_{+}and Q_{-}, where we use juxtaposition to denote tensor product. For example, $Q_{+} Q_{-}$means $Q_{+} \otimes Q_{-}$. The morphisms are generated by

$$
\begin{gathered}
\nwarrow: Q_{+} Q_{+} \rightarrow Q_{+} Q_{+}, \bigcup: \mathbf{1} \rightarrow Q_{-} Q_{+} \\
\curvearrowright: Q_{+} Q_{-} \rightarrow \mathbf{1} \longleftarrow: \mathbf{1} \rightarrow Q_{+} Q_{-}, \curvearrowleft: Q_{-} Q_{+} \rightarrow \mathbf{1} .
\end{gathered}
$$

We let

$$
\uparrow=\mathrm{id}_{Q_{+}}, \quad \downarrow=\mathrm{id}_{Q_{-}} .
$$

The morphisms above are subject to certain relations, provided in the following slide.

Heisenberg Category

Definition

The morphisms of \mathcal{H}^{\prime} satisfy the following relations:
$Z^{Y}=\uparrow \downarrow$
(3)

(5)

$$
\begin{equation*}
S=\mathrm{id}_{1} . \tag{7}
\end{equation*}
$$

In the above relations, we have used the left and right crossings defined

Heisenberg Category

Definition

The morphisms of \mathcal{H}^{\prime} satisfy the following relations:
$Z=\uparrow \downarrow$
(3)

(5)

$$
\begin{equation*}
\sigma=\mathrm{id}_{1} . \tag{7}
\end{equation*}
$$

(4)

In the above relations, we have used the left and right crossings defined by

(9)

Additive Envelope

Let \mathcal{C} be a \mathbb{k}-linear monoidal category.

The additive envelope of \mathcal{C} is a category whose objects are formal finite direct sums $\bigoplus_{i=1}^{n} X_{i}$ of objects $X_{i} \in C_{\text {, }}$ morphisms

are $m \times n$ matrices whose (j, i)-entry is a morphism

$$
f_{i, j}: X_{i} \rightarrow Y_{j} .
$$

Composition of morphisms is given by matrix multiplication.

Additive Envelope

Let \mathcal{C} be a \mathbb{k}-linear monoidal category.

The additive envelope of \mathcal{C} is a category whose

- objects are formal finite direct sums $\bigoplus_{i=1}^{n} X_{i}$ of objects $X_{i} \in \mathcal{C}$,
- morphisms

are $m \times n$ matrices whose (j, i)-entry is a morphism

$$
f_{i, j}: X_{i} \rightarrow Y_{j} .
$$

Composition of morphisms is given by matrix multiplication.

Additive Envelope

Let \mathcal{C} be a \mathbb{k}-linear monoidal category.

The additive envelope of \mathcal{C} is a category whose

- objects are formal finite direct sums $\bigoplus_{i=1}^{n} X_{i}$ of objects $X_{i} \in \mathcal{C}$,
- morphisms

$$
f: \bigoplus_{i=1}^{n} X_{i} \rightarrow \bigoplus_{j=1}^{m} Y_{j}
$$

are $m \times n$ matrices whose (j, i)-entry is a morphism

$$
f_{i, j}: X_{i} \rightarrow Y_{j} .
$$

Composition of morphisms is given by matrix multiplication.

Additive Envelope

Let \mathcal{C} be a \mathbb{k}-linear monoidal category.

The additive envelope of \mathcal{C} is a category whose

- objects are formal finite direct sums $\bigoplus_{i=1}^{n} x_{i}$ of objects $X_{i} \in \mathcal{C}$,
- morphisms

$$
f: \bigoplus_{i=1}^{n} x_{i} \rightarrow \bigoplus_{j=1}^{m} Y_{j}
$$

are $m \times n$ matrices whose (j, i)-entry is a morphism

$$
f_{i, j}: X_{i} \rightarrow Y_{j} .
$$

Composition of morphisms is given by matrix multiplication.

Isomorphism

Consider the morphism

$$
\begin{equation*}
[\nwarrow<]^{T}: Q_{-} Q_{+} \rightarrow Q_{+} Q_{-} \oplus \mathbf{1} \tag{11}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
[\searrow \cup \uparrow]=\left([\swarrow \preceq]^{T}\right)^{-1}: Q_{+} Q_{-} \oplus \mathbf{1} \rightarrow Q_{-} Q_{+} \tag{12}
\end{equation*}
$$

Composing matrices in one direction gives the following relation, which

 must hold in \mathcal{H}^{\prime} :
Isomorphism

Consider the morphism

$$
\begin{equation*}
[\nwarrow<]^{T}: Q_{-} Q_{+} \rightarrow Q_{+} Q_{-} \oplus \mathbf{1} . \tag{11}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
[\searrow \cup \uparrow]=\left([\swarrow \preceq]^{T}\right)^{-1}: Q_{+} Q_{-} \oplus \mathbf{1} \rightarrow Q_{-} Q_{+} \tag{12}
\end{equation*}
$$

Composing matrices in one direction gives the following relation, which must hold in \mathcal{H}^{\prime} :

$$
\begin{equation*}
\downarrow \uparrow=\swarrow+\rightsquigarrow \tag{13}
\end{equation*}
$$

The relation (13) follows from the definition of \mathcal{H}^{\prime}.

Isomorphism

Consider the morphism

$$
\begin{equation*}
[\nwarrow \preceq]^{T}: Q_{-} Q_{+} \rightarrow Q_{+} Q_{-} \oplus \mathbf{1} \tag{11}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
[\searrow \cup \uparrow]=\left([\swarrow \preceq]^{T}\right)^{-1}: Q_{+} Q_{-} \oplus \mathbf{1} \rightarrow Q_{-} Q_{+} \tag{12}
\end{equation*}
$$

Composing matrices in one direction gives the following relation, which must hold in \mathcal{H}^{\prime} :

$$
\begin{equation*}
\downarrow \uparrow=\aleph+\rightsquigarrow \tag{13}
\end{equation*}
$$

The relation (13) follows from the definition of \mathcal{H}^{\prime}.

Isomorphism

Composing in the other direction, we must have also have
\&
(14)
$\zeta=0$,
(16)
$\zeta=\mathrm{id}_{1}$,

The relations (14) and (17) follow from the definition of \mathcal{H}^{\prime}. The relation (15) follows from the calculation

The relation (16) follows from a similar calculation.

Isomorphism

Composing in the other direction, we must have also have
$\uparrow \downarrow=$ §
$=0$,
$\zeta=0$,
(16)

$$
\begin{equation*}
O=\mathrm{id}_{1}, \tag{17}
\end{equation*}
$$

The relations (14) and (17) follow from the definition of \mathcal{H}^{\prime}. (15) follows from the calculation

The relation (16) follows from a similar calculation.

Isomorphism

Composing in the other direction, we must have also have
C

$$
\begin{equation*}
O=\mathrm{id}_{\mathbf{1}}, \tag{16}
\end{equation*}
$$

The relations (14) and (17) follow from the definition of \mathcal{H}^{\prime}. The relation (15) follows from the calculation

The relation (16) follows from a similar calculation.

The Heisenberg Algebra

Definition

The one-variable Heisenberg algebra is the associative unital C-algebra with generators p and q subject to the canonical commutation relation:

$$
\mathbf{p q}=\mathbf{q} \mathbf{p}+\mathbf{1}
$$

Recall the isomorphism in the additive envelope of \mathcal{H}^{\prime} :

It is conjectured that the "additive Karoubi envelope" of \mathcal{H}^{\prime} categorifies the Heisenberg algebra.

The Heisenberg Algebra

Definition

The one-variable Heisenberg algebra is the associative unital \mathbb{C}-algebra with generators p and q subject to the canonical commutation relation:

$$
\mathbf{p q}=\mathbf{q} \mathbf{p}+\mathbf{1} .
$$

Recall the isomorphism in the additive envelope of \mathcal{H}^{\prime} :

$$
Q_{-} Q_{+} \cong Q_{+} Q_{-} \oplus \mathbf{1}
$$

It is conjectured that the "additive Karoubi envelope" of \mathcal{H}^{\prime} categorifies the Heisenberg algebra.

