The formal group ring and real finite reflection groups

Raj Gandhi

University of Ottawa

June 3, 2021

Raj Gandhi (University of Ottawa) Formal group ring, real finite reflection groups

June 3, 2021 1/11

Root systems

Let $V = \mathbb{R}^n$, and let (\cdot, \cdot) be the standard inner product on V. For any $\alpha \in V$, the *reflection* across α is the linear operator s_{α} defined by the formula

$$s_{\alpha}(v) = v - 2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad v \in V.$$

Root systems

Let $V = \mathbb{R}^n$, and let (\cdot, \cdot) be the standard inner product on V. For any $\alpha \in V$, the *reflection* across α is the linear operator s_{α} defined by the formula

$$s_{\alpha}(v) = v - 2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad v \in V.$$

Definition

A *root system* Σ in *V* is a finite set of nonzero vectors in *V* satisfying the conditions:

- $\Sigma \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Sigma$;
- 2 $s_{\alpha}(\Sigma) = \Sigma$ for all $\alpha \in \Sigma$;
- **③** The roots $\alpha \in \Sigma$ generate *V*.

Note: given α , $\beta \in \Sigma$, we do not require that $s_{\alpha}(\beta) = \beta - n\alpha$ for some $n \in \mathbb{Z}$.

Root systems

Let $V = \mathbb{R}^n$, and let (\cdot, \cdot) be the standard inner product on V. For any $\alpha \in V$, the *reflection* across α is the linear operator s_{α} defined by the formula

$$s_{\alpha}(v) = v - 2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad v \in V.$$

Definition

A *root system* Σ in *V* is a finite set of nonzero vectors in *V* satisfying the conditions:

- $\Sigma \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}$ for all $\alpha \in \Sigma$;
- **2** $s_{\alpha}(\Sigma) = \Sigma$ for all $\alpha \in \Sigma$;
- **3** The roots $\alpha \in \Sigma$ generate *V*.

Note: given α , $\beta \in \Sigma$, we do not require that $s_{\alpha}(\beta) = \beta - n\alpha$ for some $n \in \mathbb{Z}$. The group *W* generated by the reflections s_{α} , $\alpha \in \Sigma$, is the *real finite reflection group* of Σ .

A subset $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ of Σ is a *simple system* of Σ if it is an \mathbb{R} -basis of V, and if every root $\alpha \in \Sigma$ can be written as an \mathbb{R} -linear combination of elements in Δ with all coefficients nonnpositive or all coefficients nonnegative. We call s_{α_i} a *simple reflection*.

A subset $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ of Σ is a *simple system* of Σ if it is an \mathbb{R} -basis of V, and if every root $\alpha \in \Sigma$ can be written as an \mathbb{R} -linear combination of elements in Δ with all coefficients nonnpositive or all coefficients nonnegative. We call s_{α_i} a *simple reflection*.

Let *W* be a real finite reflection group.

Question

Can we find a root system Σ in V whose real finite reflection group is W, and a simple system Δ of Σ , such the following property holds?

A subset $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ of Σ is a *simple system* of Σ if it is an \mathbb{R} -basis of V, and if every root $\alpha \in \Sigma$ can be written as an \mathbb{R} -linear combination of elements in Δ with all coefficients nonnpositive or all coefficients nonnegative. We call s_{α_i} a *simple reflection*.

Let *W* be a real finite reflection group.

Question

Can we find a root system Σ in V whose real finite reflection group is W, and a simple system Δ of Σ , such the following property holds?

Let $\alpha \in \Sigma$ be any root. By definition of Δ , there exist unique elements $c_i^{\alpha} \in \mathbb{R}$ such that $\alpha = c_1^{\alpha} \alpha_1 + \cdots + c_n^{\alpha} \alpha_n$. Let \mathcal{R} be the subring of \mathbb{R} generated by the elements c_i^{α} over all $i = 1, \ldots, n$ and $\alpha \in \Sigma$

Property

The subring \mathfrak{R} a free finitely-generated \mathbb{Z} -module with a power basis (i.e., a basis of the form $\{1, \beta, \beta^2, \ldots, \beta^{l-1}\}$, $l \ge 1$, where $\beta \in \mathfrak{R}$).

One can show that \mathfrak{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_i^{\vee}(\alpha_j) := 2 \frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_j)}$ over all pairs of simple roots $\alpha_i, \alpha_j \in \Delta$.

One can show that \mathcal{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_i^{\vee}(\alpha_j) := 2 \frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$ over all pairs of simple roots $\alpha_i, \alpha_j \in \Delta$.

Example

If *W* is a Weyl group, we can choose (Σ, Δ) so that $\alpha_i^{\vee}(\alpha_j) \in \mathbb{Z}$. Thus, $\mathcal{R} = \mathbb{Z}$.

One can show that \mathfrak{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_i^{\vee}(\alpha_j) := 2 \frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$ over all pairs of simple roots $\alpha_i, \alpha_j \in \Delta$.

Example

If *W* is a Weyl group, we can choose (Σ, Δ) so that $\alpha_i^{\vee}(\alpha_j) \in \mathbb{Z}$. Thus, $\mathcal{R} = \mathbb{Z}$.

Example

If $W = I_2(m)$ is a dihedral group of order $2m, m \ge 3$, then we can choose (Σ, Δ) such that $\Re = \mathbb{Z}[2\cos(\frac{\pi}{m})]$.

One can show that \mathfrak{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_i^{\vee}(\alpha_j) := 2 \frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$ over all pairs of simple roots $\alpha_i, \alpha_j \in \Delta$.

Example

If *W* is a Weyl group, we can choose (Σ, Δ) so that $\alpha_i^{\vee}(\alpha_j) \in \mathbb{Z}$. Thus, $\mathcal{R} = \mathbb{Z}$.

Example

If $W = I_2(m)$ is a dihedral group of order $2m, m \ge 3$, then we can choose (Σ, Δ) such that $\Re = \mathbb{Z}[2\cos\left(\frac{\pi}{m}\right)]$.

Example

If $W = H_3$ or $W = H_4$, then we can choose (Σ, Δ) such that $\Re = \mathbb{Z}[\tau]$, where $\tau = \frac{1+\sqrt{5}}{2}$ is the golden section. It is a root of $x^2 - x - 1$.

One can show that \mathfrak{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_i^{\vee}(\alpha_j) := 2 \frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$ over all pairs of simple roots $\alpha_i, \alpha_j \in \Delta$.

Example

If *W* is a Weyl group, we can choose (Σ, Δ) so that $\alpha_i^{\vee}(\alpha_j) \in \mathbb{Z}$. Thus, $\mathcal{R} = \mathbb{Z}$.

Example

If $W = I_2(m)$ is a dihedral group of order $2m, m \ge 3$, then we can choose (Σ, Δ) such that $\Re = \mathbb{Z}[2\cos(\frac{\pi}{m})]$.

Example

If $W = H_3$ or $W = H_4$, then we can choose (Σ, Δ) such that $\Re = \mathbb{Z}[\tau]$, where $\tau = \frac{1+\sqrt{5}}{2}$ is the golden section. It is a root of $x^2 - x - 1$.

Definition

Fix a power basis $\{e_i\}$ of \Re . Let Λ be the \Re -module generated Σ . Then Λ is a free finitely-generated \mathbb{Z} -module with basis $\{e_i \alpha_j\}$.

A one-dimensional commutative formal group law (FGL) (R, F) over a commutative unital ring R is a power series $F(u, v) \in R[[u, v]]$ satisfying the following axioms:

1
$$F(u, 0) = F(0, u) = u \in R[[u]];$$

2
$$F(u, v) = F(v, u);$$

③
$$F(u, F(v, w)) = F(F(u, v), w) ∈ R[[u, v, w]].$$

A morphism $f: (R, F) \rightarrow (R, F')$ of FGLs over R is a power series $f(u) \in R[\![u]\!]$ such that f(F(u, v)) = F'(f(u), f(v)) and f(0) = 0.

A one-dimensional commutative formal group law (FGL) (R, F) over a commutative unital ring R is a power series $F(u, v) \in R[[u, v]]$ satisfying the following axioms:

1
$$F(u, 0) = F(0, u) = u \in R[[u]];$$

2
$$F(u, v) = F(v, u);$$

③
$$F(u, F(v, w)) = F(F(u, v), w) ∈ R[[u, v, w]].$$

A morphism $f: (R, F) \rightarrow (R, F')$ of FGLs over R is a power series $f(u) \in R[\![u]\!]$ such that f(F(u, v)) = F'(f(u), f(v)) and f(0) = 0.

Let (\mathbb{C}, F) be an FGL. Suppose (\mathbb{C}, F_a) is the additive formal group law over \mathbb{C} , i.e., $F_a(u, v) = u + v$. There are isomorphisms of FGLs $\log_F : (\mathbb{C}, F) \to (\mathbb{C}, F_a)$ and $\exp_F : (\mathbb{C}, F_a) \to (\mathbb{C}, F)$ called the *logarithm* and *exponential* of (\mathbb{C}, F) , i.e., $\exp_F(\log_F(u)) = \log_F(\exp_F(u)) = u$.

Let *R* be a subring of \mathbb{C} containing the coefficients in the series F(u, v)and the coefficients in the logarithm and exponential of (\mathbb{C}, F) . We call *R* an *ample ring* with respect to (\mathbb{C}, F) . Thus, we can view (R, F) as a formal group law with a logarithm and exponetial.

Let *R* be a subring of \mathbb{C} containing the coefficients in the series F(u, v)and the coefficients in the logarithm and exponential of (\mathbb{C}, F) . We call *R* an *ample ring* with respect to (\mathbb{C}, F) . Thus, we can view (R, F) as a formal group law with a logarithm and exponetial.

Example

The additive FGL (R, F_a) over R is $F_a(x, y) = x + y$.

If *R* is an ample ring with respect to (\mathbb{C}, F_a) , then the logarithm of (R, F_a) is $\log_{F_a}(x) = x$, and the exponential of (R, F_a) is $\exp_{F_a}(x) = x$.

Let *R* be a subring of \mathbb{C} containing the coefficients in the series F(u, v) and the coefficients in the logarithm and exponential of (\mathbb{C}, F) . We call *R* an *ample ring* with respect to (\mathbb{C}, F) . Thus, we can view (R, F) as a formal group law with a logarithm and exponetial.

Example

The additive FGL (R, F_a) over R is $F_a(x, y) = x + y$.

If *R* is an ample ring with respect to (\mathbb{C}, F_a) , then the logarithm of (R, F_a) is $\log_{F_a}(x) = x$, and the exponential of (R, F_a) is $\exp_{F_a}(x) = x$.

Example

The multiplicative FGL (R, F_m) over R is $F_m(x, y) = x + y + xy$. If R is an ample ring with respect to (\mathbb{C}, F_m) , then the logarithm and exponential series of (R, F_m) are given by the formulas

$$\log_{F_m}(x) = \log(1+x) = \sum_{i \ge 1} (-1)^{i-1} \frac{x^i}{i}; \quad \exp_{F_m}(x) = \exp(x) - 1 = \sum_{i \ge 1} \frac{x^i}{i!}.$$

Formal group ring

Assumption

If Σ is *noncrystallographic*, then *R* is an ample ring with respect to an FGL (\mathbb{C} , *F*), such that *R* contains \Re . If Σ is *crystallographic*, then *R* is a subring of \mathbb{C} , and (*R*, *F*) is an FGL.

Formal group ring

Assumption

If Σ is *noncrystallographic*, then *R* is an ample ring with respect to an FGL (\mathbb{C} , *F*), such that *R* contains \Re . If Σ is *crystallographic*, then *R* is a subring of \mathbb{C} , and (*R*, *F*) is an FGL.

Definition

Set $R[\![x_{\Lambda}]\!] := R[\![x_{\lambda}]\!]_{\lambda \in \Lambda}$, and let

$$f_{i,j} = egin{cases} e_i \log_F(x_{lpha_j}) - \log_F(x_{e_i lpha_j}), & \Sigma ext{ noncrystallographic;} \ 0, & -\Sigma ext{ crystallographic.} \end{cases}$$

Let \mathcal{J}_F be the closure of the ideal in $R[x_{\Lambda}]$ generated by

 x_0 and $x_{\lambda_1+\lambda_2}-(x_{\lambda_1}+_Fx_{\lambda_2})$ and $f_{i,j}$; $\lambda_1,\lambda_2\in\Lambda$; $e_i\in B$; $\alpha_j\in\Delta$.

The quotient $R[[\Lambda]]_F := R[[x_\Lambda]]_F / \mathcal{J}_F$ is the formal group ring.

Raj Gandhi (University of Ottawa)

Example

Let $S_R^i(\Lambda)$ be the *i*-th symmetric power of the *R*-module $R \otimes_{\mathcal{R}} \Lambda$, and set $(S_R^*(\Lambda))^{\wedge} := \prod_{i=0}^{\infty} S_R^i(\Lambda)$. There is an *R*-algebra isomorphism

 $R\llbracket \Lambda \rrbracket_{F_a} \simeq (S_R^*(\Lambda))^{\wedge}.$

Example

Let $S_R^i(\Lambda)$ be the *i*-th symmetric power of the *R*-module $R \otimes_{\mathcal{R}} \Lambda$, and set $(S_R^*(\Lambda))^{\wedge} := \prod_{i=0}^{\infty} S_R^i(\Lambda)$. There is an *R*-algebra isomorphism

 $R\llbracket \Lambda \rrbracket_{F_a} \simeq (S_R^*(\Lambda))^{\wedge}.$

Proposition

The following properties hold in $R[\Lambda]_{F}$:

- **1** There is a well-defined *W*-action on $R[\Lambda]_F$ given by $w(x_{\lambda}) = x_{w(\lambda)}$.
- **2** $R[[\Lambda]]_F$ is an integral domain.
- **③** x_{α_i} divides $x_{e_i\alpha_j}$ in $R[[Λ]]_F$ for all $e_i ∈ B$ and $\alpha_j ∈ Δ$.

Example

Let $S_R^i(\Lambda)$ be the *i*-th symmetric power of the *R*-module $R \otimes_{\mathcal{R}} \Lambda$, and set $(S_R^*(\Lambda))^{\wedge} := \prod_{i=0}^{\infty} S_R^i(\Lambda)$. There is an *R*-algebra isomorphism

 $R\llbracket \Lambda \rrbracket_{F_a} \simeq (S_R^*(\Lambda))^{\wedge}.$

Proposition

The following properties hold in $R[\Lambda]_{F}$:

- **1** There is a well-defined *W*-action on $R[\Lambda]_F$ given by $w(x_{\lambda}) = x_{w(\lambda)}$.
- **2** $R[[\Lambda]]_F$ is an integral domain.
- x_{α_i} divides $x_{e_i\alpha_i}$ in $R[[Λ]]_F$ for all $e_i \in B$ and $\alpha_j \in \Delta$.

Corollary

For any $u \in R[\Lambda]_F$ and root $\alpha \in \Sigma$, the element $u - s_{\alpha}(u)$ is divisible by x_{α} in $R[\Lambda]_F$.

For each root $\alpha \in \Sigma$, we define a *formal Demazure operator* Δ_{α} on $R[[\Lambda]]_F$ by the formula

$$\Delta_{\alpha}(u) = \frac{u - s_{\alpha}(u)}{x_{\alpha}}, \quad u \in R\llbracket \Lambda \rrbracket_{F}.$$

We set $\Delta_i := \Delta_{\alpha_i}$ for $\alpha_i \in \Delta$.

For each root $\alpha \in \Sigma$, we define a *formal Demazure operator* Δ_{α} on $R[[\Lambda]]_F$ by the formula

$$\Delta_{\alpha}(u) = \frac{u - s_{\alpha}(u)}{x_{\alpha}}, \quad u \in R\llbracket \Lambda \rrbracket_{F}.$$

We set $\Delta_i := \Delta_{\alpha_i}$ for $\alpha_i \in \Delta$.

Definition

Let $\mathcal{D}_{(R,F)}(\Lambda)$ be the subalgebra of *R*-linear endomorphisms of $R[\![\Lambda]\!]_F$ generated by the formal Demazure operators Δ_{α} for all roots α , and by multiplication by elements of $R[\![\Lambda]\!]_F$. Given $q \in R[[\Lambda]]_F$, let q^* be the corresponding multiplication operator in \mathcal{D}_F . Given $w \in W$, let $w = s_{i_1} \cdots s_{i_r}$ be a reduce decomposition of w. We call $I_w := (\alpha_{i_1}, \ldots, \alpha_{i_r})$ a reduced sequence of w. Fix reduced sequences $\{I_w\}_{w \in W}$, and set $\Delta_{I_w} := \Delta_{i_1} \circ \cdots \circ \Delta_{i_r}$, if $I_w := (\alpha_{i_1}, \ldots, \alpha_{i_r})$.

Given $q \in R[[\Lambda]]_F$, let q^* be the corresponding multiplication operator in \mathcal{D}_F . Given $w \in W$, let $w = s_{i_1} \cdots s_{i_r}$ be a reduce decomposition of w. We call $I_w := (\alpha_{i_1}, \ldots, \alpha_{i_r})$ a reduced sequence of w. Fix reduced sequences $\{I_w\}_{w \in W}$, and set $\Delta_{I_w} := \Delta_{i_1} \circ \cdots \circ \Delta_{i_r}$, if $I_w := (\alpha_{i_1}, \ldots, \alpha_{i_r})$.

Theorem

The elements $q^* \in R[[\Lambda]]_F$ and the formal Demazure operators $\Delta_i = \Delta_{\alpha_i}$, where $\alpha_i \in \Delta$, satisfy the following relations:

•
$$\Delta_i \circ q^* = \Delta_i(q) + (s_i(q))^* \circ \Delta_i;$$

• $\Delta_i^2 = \kappa_i^* \circ \Delta_i, \text{ where } \kappa_i := \frac{1}{x_{\alpha_i}} + \frac{1}{x_{-\alpha_i}} \in R[\![\Lambda]\!]_F;$
• $\underbrace{\Delta_i \circ \Delta_j \circ \Delta_i \cdots}_{m_{i,j} \text{-times}} - \underbrace{\Delta_j \circ \Delta_i \circ \Delta_j \cdots}_{m_{i,j} \text{-times}} = \sum_{w < w_0^{i,j}} \left(\kappa_{i,j}^w\right)^* \circ \Delta_{l_w}, \quad \kappa_{i,j}^w \in R[\![\Lambda]\!]_F.$
Here $w_0^{i,j} := \underbrace{s_i s_i s_i \cdots}_{m_{i,j} \text{-times}}, \text{ and the ordering } < \text{ is with respect to the Bruhat}$
order on W . These relations, together with the ring law in $R[\![\Lambda]\!]_F$ and the fact that the Δ_i are R -linear form a complete set of relations in $\mathcal{D}_F.$

Set
$$y_i := \frac{1}{x_{\alpha_i}}$$
 and $s_{i,j,\dots}^{(k)} := \underbrace{s_i s_j s_i \cdots}_{k\text{-times}}$ and $\Delta_{i,j,\dots}^{(k)} := \underbrace{\Delta_i \circ \Delta_j \circ \Delta_i \cdots}_{k\text{-times}}$, for $k \ge 0$.

For $k_1 \leq k_2$, define the operator

$$S_{i,j}^{(k_1,k_2)}(u) := S_{i,j,\dots}^{(k_1)}(u) + S_{i,j,\dots}^{(k_1+1)}(u) + \dots + S_{i,j,\dots}^{(k_2)}(u).$$

Set
$$y_i := \frac{1}{x_{\alpha_i}}$$
 and $s_{i,j,\dots}^{(k)} := \underbrace{s_i s_j s_i \cdots}_{k\text{-times}}$ and $\Delta_{i,j,\dots}^{(k)} := \underbrace{\Delta_i \circ \Delta_j \circ \Delta_i \cdots}_{k\text{-times}}$, for $k \ge 0$.

For $k_1 \leq k_2$, define the operator

$$S_{i,j}^{(k_1,k_2)}(u) := s_{i,j,\ldots}^{(k_1)}(u) + s_{i,j,\ldots}^{(k_1+1)}(u) + \cdots + s_{i,j,\ldots}^{(k_2)}(u).$$

Corollary

The difference $\Delta_{i,j,\ldots}^{(m_{i,j})} - \Delta_{j,i,\ldots}^{(m_{i,j})}$ can be written as a linear combination

$$\Delta_{i,j,\ldots}^{(m_{i,j})} - \Delta_{j,i,\ldots}^{(m_{i,j})} = \sum_{k=1}^{m_{i,j}-2} \left(\kappa_{i,j}^{(k)} \Delta_{i,j,\ldots}^{(k)} - \kappa_{j,i}^{(k)} \Delta_{j,i,\ldots}^{(k)} \right), \quad \kappa_{i,j}^{(k)} \in R[\![\Lambda]\!]_{F}.$$

For odd $m_{i,j}$:

$$\kappa_{j,i}^{(m_{i,j}-2)} = S_{j,i}^{(0,m_{i,j}-2)}(y_i y_j) - y_i S_{j,i,\dots}^{(m_{i,j}-2)}(y_i);$$

$$\kappa_{i,j}^{(m_{i,j}-3)} = -y_{j} \{ s_{i}(y_{i}y_{j}) + \left[S_{i,j}^{(2,m_{i,j}-3)} - S_{j,i}^{(2,m_{i,j}-3)} \right] (y_{i}y_{j}) - s_{j,i,...}^{(m_{i,j}-2)}(y_{i}y_{j}) + y_{i}s_{j,i,...}^{(m_{i,j}-2)}(y_{i}) - s_{i,j,...}^{(m_{i,j}-3)}(y_{i})s_{i,j,...}^{(m_{i,j}-2)}(y_{j}) \}.$$