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Root systems

Let V = Rn, and let (·,·) be the standard inner product on V. For any

α ∈ V, the reflection across α is the linear operator sα defined by the

formula

sα(v) = v − 2 (α,v)
(α,α)α, v ∈ V.

Definition

A root system Σ in V is a finite set of nonzero vectors in V satisfying the

conditions:

1 Σ∩Rα = {α,−α} for all α ∈ Σ;

2 sα(Σ) = Σ for all α ∈ Σ;

3 The roots α ∈ Σ generate V.

Note: given α,β ∈ Σ, we do not require that sα(β) = β− nα for some

n ∈ Z. The group W generated by the reflections sα, α ∈ Σ, is the real

finite reflection group of Σ.
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Definition

A subset ∆ = {α1, . . . ,αn} of Σ is a simple system of Σ if it is an R-basis of

V, and if every root α ∈ Σ can be written as an R-linear combination of

elements in ∆ with all coefficients nonnpositive or all coefficients

nonnegative. We call sαi a simple reflection.

Let W be a real finite reflection group.

Question

Can we find a root system Σ in V whose real finite reflection group is W,

and a simple system ∆ of Σ, such the following property holds?

Let α ∈ Σ be any root. By definition of ∆, there exist unique elements

cαi ∈ R such that α = cα1 α1 + · · ·+ cαn αn. Let R be the subring of R

generated by the elements cαi over all i = 1, . . . ,n and α ∈ Σ

Property

The subring R a free finitely-generated Z-module with a power basis

(i.e., a basis of the form {1,β,β2, . . . ,βl−1}, l > 1, where β ∈ R).
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One can show that R is the unital subring of R generated by the

elements α∨
i (αj) := 2

(αi,αj)
(αi,αi)

over all pairs of simple roots αi,αj ∈ ∆.

Example

If W is a Weyl group, we can choose (Σ,∆) so that α∨
i (αj) ∈ Z. Thus,

R = Z.

Example

If W = I2(m) is a dihedral group of order 2m, m > 3, then we can choose

(Σ,∆) such that R = Z[2cos
(
π
m

)
].

Example

If W = H3 or W = H4, then we can choose (Σ,∆) such that R = Z[τ],

where τ = 1+
√

5
2 is the golden section. It is a root of x2 − x − 1.

Definition

Fix a power basis {ei} of R. Let Λ be the R-module generated Σ. Then Λ is

a free finitely-generated Z-module with basis {eiαj}.
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Formal group laws

Definition

A one-dimensional commutative formal group law (FGL) (R, F) over a

commutative unital ring R is a power series F(u, v) ∈ RJu, vK satisfying

the following axioms:

1 F(u,0) = F(0,u) = u ∈ RJuK;
2 F(u, v) = F(v,u);

3 F(u, F(v,w)) = F(F(u, v),w) ∈ RJu, v,wK.

A morphism f : (R, F)→ (R, F ′) of FGLs over R is a power series

f(u) ∈ RJuK such that f(F(u, v)) = F ′(f(u), f(v)) and f(0) = 0.

Let (C, F) be an FGL. Suppose (C, Fa) is the additive formal group law

over C, i.e., Fa(u, v) = u+ v. There are isomorphisms of FGLs

logF : (C, F)→ (C, Fa) and expF : (C, Fa)→ (C, F) called the logarithm

and exponential of (C, F), i.e., expF(logF(u)) = logF(expF(u)) = u.
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Definition

Let R be a subring of C containing the coefficients in the series F(u, v)

and the coefficients in the logarithm and exponential of (C, F). We call R

an ample ring with respect to (C, F). Thus, we can view (R, F) as a formal

group law with a logarithm and exponetial.

Example

The additive FGL (R, Fa) over R is Fa(x, y) = x + y.

If R is an ample ring with respect to (C, Fa), then the logarithm of (R, Fa)

is logFa
(x) = x, and the exponential of (R, Fa) is expFa

(x) = x.

Example

The multiplicative FGL (R, Fm) over R is Fm(x, y) = x + y + xy.

If R is an ample ring with respect to (C, Fm), then the logarithm and

exponential series of (R, Fm) are given by the formulas

logFm
(x) = log(1+ x) =

∑
i>1

(−1)i−1 xi

i ; expFm
(x) = exp(x) − 1 =

∑
i>1

xi

i! .
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Formal group ring

Assumption

If Σ is noncrystallographic, then R is an ample ring with respect to an FGL

(C, F), such that R contains R. If Σ is crystallographic, then R is a subring

of C, and (R, F) is an FGL.

Definition

Set RJxΛK := RJxλKλ∈Λ, and let

fi,j =

{
eilogF(xαj) − logF(xeiαj), Σ noncrystallographic;

0, −Σ crystallographic.

Let JF be the closure of the ideal in RJxΛK generated by

x0 and xλ1+λ2 − (xλ1 +F xλ2) and fi,j; λ1, λ2 ∈ Λ; ei ∈ B;αj ∈ ∆.

The quotient RJΛKF := RJxΛKF/JF is the formal group ring.
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Example

Let Si
R(Λ) be the i-th symmetric power of the R-module R⊗R Λ, and set

(S∗R(Λ))
∧ :=

∞∏
i=0

Si
R(Λ). There is an R-algebra isomorphism

RJΛKFa ' (S∗R(Λ))
∧.

Proposition

The following properties hold in RJΛKF:

1 There is a well-defined W-action on RJΛKF given by w(xλ) = xw(λ).

2 RJΛKF is an integral domain.

3 xαj divides xeiαj in RJΛKF for all ei ∈ B and αj ∈ ∆.

Corollary

For any u ∈ RJΛKF and root α ∈ Σ, the element u− sα(u) is divisible by xα
in RJΛKF.
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Formal Demazure operators

Definition

For each root α ∈ Σ, we define a formal Demazure operator ∆α on RJΛKF

by the formula

∆α(u) =
u−sα(u)

xα
, u ∈ RJΛKF.

We set ∆i := ∆αi for αi ∈ ∆.

Definition

Let D(R,F)(Λ) be the subalgebra of R-linear endomorphisms of RJΛKF

generated by the formal Demazure operators ∆α for all roots α, and by

multiplication by elements of RJΛKF.
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Given q ∈ RJΛKF, let q∗ be the corresponding multiplication operator in

DF. Given w ∈ W, let w = si1 · · · sir be a reduce decomposition of w. We

call Iw := (αi1 , . . . ,αir ) a reduced sequence of w. Fix reduced sequences

{Iw}w∈W, and set ∆Iw := ∆i1 ◦ · · · ◦∆ir , if Iw := (αi1 , . . . ,αir ).

Theorem

The elements q∗ ∈ RJΛKF and the formal Demazure operators ∆i = ∆αi ,

where αi ∈ ∆, satisfy the following relations:

1 ∆i ◦ q∗ = ∆i(q) + (si(q))∗ ◦∆i;

2 ∆2
i = κ∗i ◦∆i, where κi :=

1
xαi

+ 1
x−αi
∈ RJΛKF;

3 ∆i ◦∆j ◦∆i · · ·︸ ︷︷ ︸
mi,j-times

−∆j ◦∆i ◦∆j · · ·︸ ︷︷ ︸
mi,j-times

=
∑

w<wi,j
0

(
κw

i,j

)∗
◦∆Iw , κw

i,j ∈ RJΛKF.

Here wi,j
0 := sisisi · · ·︸ ︷︷ ︸

mi,j-times

, and the ordering < is with respect to the Bruhat

order on W. These relations, together with the ring law in RJΛKF and the

fact that the ∆i are R-linear form a complete set of relations in DF.
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Set yi :=
1

xαi
and s

(k)
i,j,... := sisjsi · · ·︸ ︷︷ ︸

k-times

and ∆
(k)
i,j,... := ∆i ◦∆j ◦∆i · · ·︸ ︷︷ ︸

k-times

, for k > 0.

For k1 6 k2, define the operator

S
(k1,k2)
i,j (u) := s

(k1)
i,j,...(u) + s

(k1+1)
i,j,... (u) + · · ·+ s

(k2)
i,j,...(u).

Corollary

The difference ∆
(mi,j)
i,j,... −∆

(mi,j)
j,i,... can be written as a linear combination

∆
(mi,j)
i,j,... −∆

(mi,j)
j,i,... =

mi,j−2∑
k=1

(
κ
(k)
i,j ∆

(k)
i,j,... − κ

(k)
j,i ∆

(k)
j,i,...

)
, κ

(k)
i,j ∈ RJΛKF.

For odd mi,j:

κ
(mi,j−2)
j,i = S

(0,mi,j−2)
j,i (yiyj) − yis

(mi,j−2)
j,i,... (yi);

κ
(mi,j−3)
i,j =− yj{si(yiyj) +

[
S
(2,mi,j−3)
i,j − S

(2,mi,j−3)
j,i

]
(yiyj)

− s
(mi,j−2)
j,i,... (yiyj) + yis

(mi,j−2)
j,i,... (yi) − s

(mi,j−3)
i,j,... (yi)s

(mi,j−2)
i,j,... (yj)}.
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Set yi :=
1

xαi
and s

(k)
i,j,... := sisjsi · · ·︸ ︷︷ ︸

k-times

and ∆
(k)
i,j,... := ∆i ◦∆j ◦∆i · · ·︸ ︷︷ ︸

k-times

, for k > 0.

For k1 6 k2, define the operator

S
(k1,k2)
i,j (u) := s

(k1)
i,j,...(u) + s

(k1+1)
i,j,... (u) + · · ·+ s

(k2)
i,j,...(u).

Corollary

The difference ∆
(mi,j)
i,j,... −∆

(mi,j)
j,i,... can be written as a linear combination

∆
(mi,j)
i,j,... −∆

(mi,j)
j,i,... =

mi,j−2∑
k=1

(
κ
(k)
i,j ∆

(k)
i,j,... − κ

(k)
j,i ∆

(k)
j,i,...

)
, κ

(k)
i,j ∈ RJΛKF.

For odd mi,j:

κ
(mi,j−2)
j,i = S

(0,mi,j−2)
j,i (yiyj) − yis

(mi,j−2)
j,i,... (yi);

κ
(mi,j−3)
i,j =− yj{si(yiyj) +

[
S
(2,mi,j−3)
i,j − S

(2,mi,j−3)
j,i

]
(yiyj)

− s
(mi,j−2)
j,i,... (yiyj) + yis

(mi,j−2)
j,i,... (yi) − s

(mi,j−3)
i,j,... (yi)s

(mi,j−2)
i,j,... (yj)}.
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