The formal group ring and real finite reflection groups

Raj Gandhi

University of Ottawa
June 3, 2021

Root systems

Let $V=\mathbb{R}^{n}$, and let (\cdot, \cdot) be the standard inner product on V. For any $\alpha \in V$, the reflection across α is the linear operator s_{α} defined by the formula

$$
s_{\alpha}(v)=v-2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad v \in V
$$

Root systems

Let $V=\mathbb{R}^{n}$, and let (\cdot, \cdot) be the standard inner product on V. For any $\alpha \in V$, the reflection across α is the linear operator s_{α} defined by the formula

$$
s_{\alpha}(v)=v-2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad v \in V
$$

Definition

A root system Σ in V is a finite set of nonzero vectors in V satisfying the conditions:
(1) $\Sigma \cap \mathbb{R} \alpha=\{\alpha,-\alpha\}$ for all $\alpha \in \Sigma$;
(2) $s_{\alpha}(\Sigma)=\Sigma$ for all $\alpha \in \Sigma$;
(3) The roots $\alpha \in \Sigma$ generate V.

Note: given $\alpha, \beta \in \Sigma$, we do not require that $s_{\alpha}(\beta)=\beta-n \alpha$ for some $n \in \mathbb{Z}$.

Root systems

Let $V=\mathbb{R}^{n}$, and let (\cdot, \cdot) be the standard inner product on V. For any $\alpha \in V$, the reflection across α is the linear operator s_{α} defined by the formula

$$
s_{\alpha}(v)=v-2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad v \in V
$$

Definition

A root system Σ in V is a finite set of nonzero vectors in V satisfying the conditions:
(1) $\Sigma \cap \mathbb{R} \alpha=\{\alpha,-\alpha\}$ for all $\alpha \in \Sigma$;
(2) $s_{\alpha}(\Sigma)=\Sigma$ for all $\alpha \in \Sigma$;
(3) The roots $\alpha \in \Sigma$ generate V.

Note: given $\alpha, \beta \in \Sigma$, we do not require that $s_{\alpha}(\beta)=\beta-n \alpha$ for some $n \in \mathbb{Z}$. The group W generated by the reflections $s_{\alpha}, \alpha \in \Sigma$, is the real finite reflection group of Σ.

Definition

A subset $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of Σ is a simple system of Σ if it is an \mathbb{R}-basis of V, and if every root $\alpha \in \Sigma$ can be written as an \mathbb{R}-linear combination of elements in Δ with all coefficients nonnpositive or all coefficients nonnegative. We call $s_{\alpha_{i}}$ a simple reflection.

Definition

A subset $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of Σ is a simple system of Σ if it is an \mathbb{R}-basis of V, and if every root $\alpha \in \Sigma$ can be written as an \mathbb{R}-linear combination of elements in Δ with all coefficients nonnpositive or all coefficients nonnegative. We call $s_{\alpha_{i}}$ a simple reflection.

Let W be a real finite reflection group.

Question

Can we find a root system Σ in V whose real finite reflection group is W, and a simple system Δ of Σ, such the following property holds?

Definition

A subset $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of Σ is a simple system of Σ if it is an \mathbb{R}-basis of V, and if every root $\alpha \in \Sigma$ can be written as an \mathbb{R}-linear combination of elements in Δ with all coefficients nonnpositive or all coefficients nonnegative. We call $s_{\alpha_{i}}$ a simple reflection.

Let W be a real finite reflection group.

Question

Can we find a root system Σ in V whose real finite reflection group is W, and a simple system Δ of Σ, such the following property holds?

Let $\alpha \in \Sigma$ be any root. By definition of Δ, there exist unique elements $c_{i}^{\alpha} \in \mathbb{R}$ such that $\alpha=c_{1}^{\alpha} \alpha_{1}+\cdots+c_{n}^{\alpha} \alpha_{n}$. Let \mathcal{R} be the subring of \mathbb{R} generated by the elements c_{i}^{α} over all $i=1, \ldots, n$ and $\alpha \in \Sigma$

Property

The subring \mathcal{R} a free finitely-generated \mathbb{Z}-module with a power basis (i.e., a basis of the form $\left\{1, \beta, \beta^{2}, \ldots, \beta^{\prime-1}\right\}, I \geqslant 1$, where $\beta \in \mathcal{R}$).

One can show that \mathcal{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_{i}^{\vee}\left(\alpha_{j}\right):=2 \frac{\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}$ over all pairs of simple roots $\alpha_{i}, \alpha_{j} \in \Delta$.

One can show that \mathcal{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_{i}^{\vee}\left(\alpha_{j}\right):=2 \frac{\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}$ over all pairs of simple roots $\alpha_{i}, \alpha_{j} \in \Delta$.

Example

If W is a Weyl group, we can choose (Σ, Δ) so that $\alpha_{i}^{\vee}\left(\alpha_{j}\right) \in \mathbb{Z}$. Thus, $\mathcal{R}=\mathbb{Z}$.

One can show that \mathcal{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_{i}^{\vee}\left(\alpha_{j}\right):=2 \frac{\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}$ over all pairs of simple roots $\alpha_{i}, \alpha_{j} \in \Delta$.

Example

If W is a Weyl group, we can choose (Σ, Δ) so that $\alpha_{i}^{\vee}\left(\alpha_{j}\right) \in \mathbb{Z}$. Thus, $\mathcal{R}=\mathbb{Z}$.

Example

If $W=I_{2}(m)$ is a dihedral group of order $2 m, m \geqslant 3$, then we can choose (Σ, Δ) such that $\mathcal{R}=\mathbb{Z}\left[2 \cos \left(\frac{\pi}{m}\right)\right]$.

One can show that \mathcal{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_{i}^{\vee}\left(\alpha_{j}\right):=2 \frac{\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}$ over all pairs of simple roots $\alpha_{i}, \alpha_{j} \in \Delta$.

Example

If W is a Weyl group, we can choose (Σ, Δ) so that $\alpha_{i}^{\vee}\left(\alpha_{j}\right) \in \mathbb{Z}$. Thus, $\mathcal{R}=\mathbb{Z}$.

Example

If $W=I_{2}(m)$ is a dihedral group of order $2 m, m \geqslant 3$, then we can choose (Σ, Δ) such that $\mathcal{R}=\mathbb{Z}\left[2 \cos \left(\frac{\pi}{m}\right)\right]$.

Example

If $W=H_{3}$ or $W=H_{4}$, then we can choose (Σ, Δ) such that $\mathcal{R}=\mathbb{Z}[\tau]$, where $\tau=\frac{1+\sqrt{5}}{2}$ is the golden section. It is a root of $x^{2}-x-1$.

One can show that \mathcal{R} is the unital subring of \mathbb{R} generated by the elements $\alpha_{i}^{\vee}\left(\alpha_{j}\right):=2 \frac{\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}$ over all pairs of simple roots $\alpha_{i}, \alpha_{j} \in \Delta$.

Example

If W is a Weyl group, we can choose (Σ, Δ) so that $\alpha_{i}^{\vee}\left(\alpha_{j}\right) \in \mathbb{Z}$. Thus, $\mathcal{R}=\mathbb{Z}$.

Example

If $W=I_{2}(m)$ is a dihedral group of order $2 m, m \geqslant 3$, then we can choose (Σ, Δ) such that $\mathcal{R}=\mathbb{Z}\left[2 \cos \left(\frac{\pi}{m}\right)\right]$.

Example

If $W=H_{3}$ or $W=H_{4}$, then we can choose (Σ, Δ) such that $\mathcal{R}=\mathbb{Z}[\tau]$, where $\tau=\frac{1+\sqrt{5}}{2}$ is the golden section. It is a root of $x^{2}-x-1$.

Definition

Fix a power basis $\left\{e_{i}\right\}$ of \mathcal{R}. Let Λ be the \mathcal{R}-module generated Σ. Then Λ is a free finitely-generated \mathbb{Z}-module with basis $\left\{e_{i} \alpha_{j}\right\}$.

Formal group laws

Definition

A one-dimensional commutative formal group law (FGL) (R, F) over a commutative unital ring R is a power series $F(u, v) \in R \llbracket u, v \rrbracket$ satisfying the following axioms:
(1) $F(u, 0)=F(0, u)=u \in R \llbracket u \rrbracket$;
(2) $F(u, v)=F(v, u)$;
(3) $F(u, F(v, w))=F(F(u, v), w) \in R \llbracket u, v, w \rrbracket$.

A morphism $f:(R, F) \rightarrow\left(R, F^{\prime}\right)$ of FGLs over R is a power series $f(u) \in R \llbracket u \rrbracket$ such that $f(F(u, v))=F^{\prime}(f(u), f(v))$ and $f(0)=0$.

Formal group laws

Definition

A one-dimensional commutative formal group law (FGL) (R, F) over a commutative unital ring R is a power series $F(u, v) \in R \llbracket u, v \rrbracket$ satisfying the following axioms:
(1) $F(u, 0)=F(0, u)=u \in R \llbracket u \rrbracket$;
(2) $F(u, v)=F(v, u)$;
(3) $F(u, F(v, w))=F(F(u, v), w) \in R \llbracket u, v, w \rrbracket$.

A morphism $f:(R, F) \rightarrow\left(R, F^{\prime}\right)$ of FGLs over R is a power series $f(u) \in R \llbracket u \rrbracket$ such that $f(F(u, v))=F^{\prime}(f(u), f(v))$ and $f(0)=0$.

Let (\mathbb{C}, F) be an FGL. Suppose $\left(\mathbb{C}, F_{a}\right)$ is the additive formal group law over \mathbb{C}, i.e., $F_{a}(u, v)=u+v$. There are isomorphisms of FGLs $\log _{F}:(\mathbb{C}, F) \rightarrow\left(\mathbb{C}, F_{a}\right)$ and $\exp _{F}:\left(\mathbb{C}, F_{a}\right) \rightarrow(\mathbb{C}, F)$ called the logarithm and exponential of (\mathbb{C}, F), i.e., $\exp _{F}\left(\log _{F}(u)\right)=\log _{F}\left(\exp _{F}(u)\right)=u$.

Definition

Let R be a subring of \mathbb{C} containing the coefficients in the series $F(u, v)$ and the coefficients in the logarithm and exponential of (\mathbb{C}, F). We call R an ample ring with respect to (C, F). Thus, we can view (R, F) as a formal group law with a logarithm and exponetial.

Definition

Let R be a subring of \mathbb{C} containing the coefficients in the series $F(u, v)$ and the coefficients in the logarithm and exponential of (\mathbb{C}, F). We call R an ample ring with respect to (\mathbb{C}, F). Thus, we can view (R, F) as a formal group law with a logarithm and exponetial.

Example

The additive FGL $\left(R, F_{a}\right)$ over R is $F_{a}(x, y)=x+y$. If R is an ample ring with respect to (\mathbb{C}, F_{a}), then the logarithm of $\left(R, F_{a}\right)$ is $\log _{F_{a}}(x)=x$, and the exponential of $\left(R, F_{a}\right)$ is $\exp _{F_{a}}(x)=x$.

Definition

Let R be a subring of \mathbb{C} containing the coefficients in the series $F(u, v)$ and the coefficients in the logarithm and exponential of (\mathbb{C}, F). We call R an ample ring with respect to (C, F). Thus, we can view (R, F) as a formal group law with a logarithm and exponetial.

Example

The additive FGL $\left(R, F_{a}\right)$ over R is $F_{a}(x, y)=x+y$. If R is an ample ring with respect to $\left(\mathbb{C}, F_{a}\right)$, then the logarithm of $\left(R, F_{a}\right)$ is $\log _{F_{a}}(x)=x$, and the exponential of $\left(R, F_{a}\right)$ is $\exp _{F_{a}}(x)=x$.

Example

The multiplicative FGL $\left(R, F_{m}\right)$ over R is $F_{m}(x, y)=x+y+x y$.
If R is an ample ring with respect to (\mathbb{C}, F_{m}), then the logarithm and exponential series of $\left(R, F_{m}\right)$ are given by the formulas

$$
\log _{F_{m}}(x)=\log (1+x)=\sum_{i \geqslant 1}(-1)^{i-1 \frac{x^{i}}{i} ; \quad \exp _{F_{m}}(x)=\exp (x)-1=\sum_{i \geqslant 1} \frac{x^{i}}{i!} . . . ~ . ~}
$$

Formal group ring

Assumption

If Σ is noncrystallographic, then R is an ample ring with respect to an FGL (\mathbb{C}, F), such that R contains \mathcal{R}. If Σ is crystallographic, then R is a subring of C, and (R, F) is an FGL.

Formal group ring

Assumption

If Σ is noncrystallographic, then R is an ample ring with respect to an FGL (C, F), such that R contains \mathcal{R}. If Σ is crystallographic, then R is a subring of \mathbb{C}, and (R, F) is an FGL.

Definition

Set $R \llbracket x_{\wedge} \rrbracket:=R \llbracket x_{\lambda} \rrbracket_{\lambda \in \Lambda}$, and let

$$
f_{i, j}= \begin{cases}e_{i} \log _{F}\left(x_{\alpha_{j}}\right)-\log _{F}\left(x_{e_{i} \alpha_{j}}\right), & \Sigma \text { noncrystallographic } ; \\ 0, & \Sigma \text { crystallographic. }\end{cases}
$$

Let \mathcal{J}_{F} be the closure of the ideal in $R \llbracket x_{\wedge} \rrbracket$ generated by
x_{0} and $x_{\lambda_{1}+\lambda_{2}}-\left(x_{\lambda_{1}+F} x_{\lambda_{2}}\right)$ and $f_{i, j} ; \quad \lambda_{1}, \lambda_{2} \in \Lambda ; e_{i} \in B ; \alpha_{j} \in \Delta$.
The quotient $R \llbracket \Lambda \rrbracket_{F}:=R \llbracket x_{\Lambda} \rrbracket_{F} / \mathcal{J}_{F}$ is the formal group ring.

Example

Let $S_{R}^{i}(\Lambda)$ be the i-th symmetric power of the R-module $R \otimes_{\mathcal{R}} \Lambda$, and set $\left(S_{R}^{*}(\Lambda)\right)^{\wedge}:=\prod_{i=0}^{\infty} S_{R}^{i}(\Lambda)$. There is an R-algebra isomorphism

$$
R \llbracket \Lambda \rrbracket_{F_{\mathrm{a}}} \simeq\left(S_{R}^{*}(\Lambda)\right)^{\wedge} .
$$

Example

Let $S_{R}^{i}(\Lambda)$ be the i-th symmetric power of the R-module $R \otimes_{\mathcal{R}} \Lambda$, and set $\left(S_{R}^{*}(\Lambda)\right)^{\wedge}:=\prod_{i=0}^{\infty} S_{R}^{i}(\Lambda)$. There is an R-algebra isomorphism

$$
R \llbracket \Lambda \rrbracket_{F_{\mathrm{a}}} \simeq\left(S_{R}^{*}(\Lambda)\right)^{\wedge} .
$$

Proposition

The following properties hold in $R \llbracket \Lambda \rrbracket_{F}$:
(1) There is a well-defined W-action on $R \llbracket \Lambda \rrbracket_{F}$ given by $w\left(x_{\lambda}\right)=x_{w(\lambda)}$.
(2) $R \llbracket \Lambda \rrbracket_{F}$ is an integral domain.
(3) $x_{\alpha_{j}}$ divides $x_{e_{i} \alpha_{j}}$ in $R \llbracket \Lambda \rrbracket_{F}$ for all $e_{i} \in B$ and $\alpha_{j} \in \Delta$.

Example

Let $S_{R}^{i}(\Lambda)$ be the i-th symmetric power of the R-module $R \otimes_{\mathcal{R}} \Lambda$, and set $\left(S_{R}^{*}(\Lambda)\right)^{\wedge}:=\prod_{i=0}^{\infty} S_{R}^{i}(\Lambda)$. There is an R-algebra isomorphism

$$
R \llbracket \Lambda \rrbracket_{F_{\mathrm{a}}} \simeq\left(S_{R}^{*}(\Lambda)\right)^{\wedge}
$$

Proposition

The following properties hold in $R \llbracket \Lambda \rrbracket_{F}$:
(1) There is a well-defined W-action on $R \llbracket \Lambda \rrbracket_{F}$ given by $w\left(x_{\lambda}\right)=x_{w(\lambda)}$.
(2) $R \llbracket \Lambda \rrbracket_{F}$ is an integral domain.
(3) $x_{\alpha_{j}}$ divides $x_{e_{i} \alpha_{j}}$ in $R \llbracket \Lambda \rrbracket_{F}$ for all $e_{i} \in B$ and $\alpha_{j} \in \Delta$.

Corollary

For any $u \in R \llbracket \Lambda \rrbracket_{F}$ and root $\alpha \in \Sigma$, the element $u-s_{\alpha}(u)$ is divisible by x_{α} in $R \llbracket \Lambda \rrbracket_{F}$.

Formal Demazure operators

Definition

For each root $\alpha \in \Sigma$, we define a formal Demazure operator Δ_{α} on $R \llbracket \Lambda \rrbracket_{F}$ by the formula

$$
\Delta_{\alpha}(u)=\frac{u-s_{\alpha}(u)}{x_{\alpha}}, \quad u \in R \llbracket \Lambda \rrbracket_{F}
$$

We set $\Delta_{i}:=\Delta_{\alpha_{i}}$ for $\alpha_{i} \in \Delta$.

Formal Demazure operators

Definition

For each root $\alpha \in \Sigma$, we define a formal Demazure operator Δ_{α} on $R \llbracket \Lambda \rrbracket_{F}$ by the formula

$$
\Delta_{\alpha}(u)=\frac{u-s_{\alpha}(u)}{x_{\alpha}}, \quad u \in R \llbracket \Lambda \rrbracket_{F} .
$$

We set $\Delta_{i}:=\Delta_{\alpha_{i}}$ for $\alpha_{i} \in \Delta$.

Definition

Let $\mathcal{D}_{(R, F)}(\Lambda)$ be the subalgebra of R-linear endomorphisms of $R \llbracket \Lambda \rrbracket_{F}$ generated by the formal Demazure operators Δ_{α} for all roots α, and by multiplication by elements of $R \llbracket \Lambda \rrbracket_{F}$.

Given $q \in R \llbracket \Lambda \rrbracket_{F}$, let q^{*} be the corresponding multiplication operator in \mathcal{D}_{F}. Given $w \in W$, let $w=s_{i_{1}} \cdots s_{i_{r}}$ be a reduce decomposition of w. We call $I_{w}:=\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{r}}\right)$ a reduced sequence of w. Fix reduced sequences $\left\{I_{w}\right\}_{w \in W}$, and set $\Delta_{I_{w}}:=\Delta_{i_{1}} \circ \cdots \circ \Delta_{i_{r}}$, if $I_{w}:=\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{r}}\right)$.

Given $q \in R \llbracket \wedge \rrbracket_{F}$, let q^{*} be the corresponding multiplication operator in \mathcal{D}_{F}. Given $w \in W$, let $w=s_{i_{1}} \cdots s_{i_{r}}$ be a reduce decomposition of w. We call $I_{w}:=\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{r}}\right)$ a reduced sequence of w. Fix reduced sequences $\left\{I_{w}\right\}_{w \in W}$, and set $\Delta_{I_{w}}:=\Delta_{i_{1}} \circ \cdots \circ \Delta_{i_{r}}$, if $I_{w}:=\left(\alpha_{i_{1}}, \ldots, \alpha_{i_{r}}\right)$.

Theorem

The elements $q^{*} \in R \llbracket \Lambda \rrbracket_{F}$ and the formal Demazure operators $\Delta_{i}=\Delta_{\alpha_{i}}$, where $\alpha_{i} \in \Delta$, satisfy the following relations:
(1) $\Delta_{i} \circ q^{*}=\Delta_{i}(q)+\left(s_{i}(q)\right)^{*} \circ \Delta_{i}$;
(2) $\Delta_{i}^{2}=\kappa_{i}^{*} \circ \Delta_{i}$, where $\kappa_{i}:=\frac{1}{x_{\alpha_{i}}}+\frac{1}{x_{-\alpha_{i}}} \in R \llbracket \Lambda \rrbracket_{F}$;
(3) $\underbrace{\Delta_{i} \circ \Delta_{j} \circ \Delta_{i} \cdots}_{m_{i, j} \text {-times }}-\underbrace{\Delta_{j} \circ \Delta_{i} \circ \Delta_{j} \cdots}_{m_{i, j} \text {-times }}=\sum_{w<w_{0}^{i, j}}\left(\kappa_{i, j}^{w}\right)^{*} \circ \Delta_{l_{w}}, \quad \kappa_{i, j}^{w} \in R \llbracket \Lambda \rrbracket_{F}$.

Here $w_{0}^{i, j}:=\underbrace{s_{i} s_{i} s_{i} \cdots}_{m_{i j}-\text { times }}$, and the ordering $<$ is with respect to the Bruhat
order on W. These relations, together with the ring law in $R \llbracket \Lambda \rrbracket_{F}$ and the fact that the Δ_{i} are R-linear form a complete set of relations in \mathcal{D}_{F}.

Set $y_{i}:=\frac{1}{x_{\alpha_{i}}}$ and $s_{i, j, \ldots}^{(k)}:=\underbrace{s_{i} s_{j} s_{i} \cdots}_{k \text {-times }}$ and $\Delta_{i, j, \ldots}^{(k)}:=\underbrace{\Delta_{i} \circ \Delta_{j} \circ \Delta_{i} \cdots}_{k \text {-times }}$, for $k \geqslant 0$.
For $k_{1} \leqslant k_{2}$, define the operator

$$
s_{i, j}^{\left(k_{1}, k_{2}\right)}(u):=s_{i, j, \ldots}^{\left(k_{1}\right)}(u)+s_{i, j, \ldots}^{\left(k_{1}+1\right)}(u)+\cdots+s_{i, j, \ldots}^{\left(k_{2}\right)}(u) .
$$

Set $y_{i}:=\frac{1}{x_{\alpha_{i}}}$ and $s_{i, j, \ldots}^{(k)}:=\underbrace{s_{i} s_{j} s_{i} \cdots}_{k \text {-times }}$ and $\Delta_{i, j, \ldots}^{(k)}:=\underbrace{\Delta_{i} \circ \Delta_{j} \circ \Delta_{i} \cdots}_{k \text {-times }}$, for $k \geqslant 0$.
For $k_{1} \leqslant k_{2}$, define the operator

$$
s_{i, j}^{\left(k_{1}, k_{2}\right)}(u):=s_{i, j, \ldots}^{\left(k_{1}\right)}(u)+s_{i, j, \ldots}^{\left(k_{1}+1\right)}(u)+\cdots+s_{i, j, \ldots}^{\left(k_{2}\right)}(u) .
$$

Corollary

The difference $\Delta_{i, j, \ldots}^{\left(m_{i, \ldots}\right)}-\Delta_{j, i, \ldots}^{\left(m_{i, j}\right)}$ can be written as a linear combination

$$
\Delta_{i, j, \ldots}^{\left(m_{i, j}\right)}-\Delta_{j, i, \ldots}^{\left(m_{i, j}\right)}=\sum_{k=1}^{m_{i, j}-2}\left(\kappa_{i, j}^{(k)} \Delta_{i, j, \ldots}^{(k)}-\kappa_{j, i}^{(k)} \Delta_{j, i, \ldots}^{(k)}\right), \quad \kappa_{i, j}^{(k)} \in R \llbracket \Lambda \rrbracket_{F} .
$$

For odd $m_{i, j}$:

$$
\begin{gathered}
\kappa_{j, i}^{\left(m_{i, j}-2\right)}=s_{j, i}^{\left(0, m_{i, j}-2\right)}\left(y_{i} y_{j}\right)-y_{i} s_{j, i, \ldots}^{\left(m_{i, j}-2\right)}\left(y_{i}\right) ; \\
\kappa_{i, j}^{\left(m_{i, j}-3\right)}=-y_{j}\left\{s_{i}\left(y_{i} y_{j}\right)+\left[s_{i, j}^{\left(2, m_{i, j}-3\right)}-s_{j, i}^{\left(2, m_{i, j}-3\right)}\right]\left(y_{i} y_{j}\right)\right. \\
\left.-s_{j, i, \ldots}^{\left(m_{i, \ldots}-2\right)}\left(y_{i} y_{j}\right)+y_{i} s_{j, i, \ldots}^{\left(m_{i, j}-2\right)}\left(y_{i}\right)-s_{i, j, \ldots}^{\left(m_{i, j}-3\right)}\left(y_{i}\right) s_{i, j, \ldots}^{\left(m_{i, j}-2\right)}\left(y_{j}\right)\right\} .
\end{gathered}
$$

