Twisted Formal Group Algebras

Raj Gandhi

University of Ottawa

August 16, 2017

Raj Gandhi (University of Ottawa)

Twisted Formal Group Algebras

August 16, 2017 1 / 20

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$s_{\alpha}(t) = t - 2 \frac{(t,\alpha)}{(\alpha,\alpha)} \alpha$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A **Root System**, Σ , of V is a set of vectors of V such that for all $a \in \Sigma$:

Every root system Σ is associated with some reflection group W_{+}

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$s_{\alpha}(t) = t - 2 \frac{(t,\alpha)}{(\alpha,\alpha)} \alpha$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A **Root System**, Σ , of V is a set of vectors of V such that for all $a \in \Sigma$:

Every root system Σ is associated with some reflection group W.

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$s_{\alpha}(t) = t - 2 \frac{(t,\alpha)}{(\alpha,\alpha)} \alpha$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A **Root System**, Σ , of V is a set of vectors of V such that for all $a \in \Sigma$:

Every root system Σ is associated with some reflection group W

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$s_{\alpha}(t) = t - 2 \frac{(t,\alpha)}{(\alpha,\alpha)} \alpha$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A **Root System**, Σ , of V is a set of vectors of V such that for all $a \in \Sigma$:

$$\ \, \mathbf{\Sigma} \cap \mathbf{c}\mathbf{a} = \{\mathbf{a}, -\mathbf{a}\}, \mathbf{c} \in \mathbf{R}$$

Every root system Σ is associated with some reflection group W

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$s_{\alpha}(t) = t - 2 \frac{(t,\alpha)}{(\alpha,\alpha)} \alpha$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A **Root System**, Σ , of V is a set of vectors of V such that for all $a \in \Sigma$:

$$\ 2 \ \ s_a \Sigma = \Sigma$$

Every root system Σ is associated with some reflection group W_{\perp}

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$s_{\alpha}(t) = t - 2 \frac{(t,\alpha)}{(\alpha,\alpha)} \alpha$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A **Root System**, Σ , of V is a set of vectors of V such that for all $a \in \Sigma$:

$$s_a \Sigma = \Sigma$$

Every root system Σ is associated with some reflection group W.

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$s_{\alpha}(t) = t - 2 \frac{(t,\alpha)}{(\alpha,\alpha)} \alpha$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A **Root System**, Σ , of V is a set of vectors of V such that for all $a \in \Sigma$:

$$s_a \Sigma = \Sigma$$

Every root system Σ is associated with some reflection group W.

Definition

Let V be an vector space. Let $\Sigma = \{\alpha_1, \ldots, \alpha_n\}$ be a Root System of V. Let $\Delta = \{\beta_1, \ldots, \beta_k\}, k \leq n. \Delta$ is a **Simple System** of Φ if it is a vector space basis of V and for all $\alpha_i \in \Sigma$

$$\alpha_j = \sum_{i=1}^{\kappa} a_i \beta_i,$$

where, for each j, $a_i > 0$ or $a_i < 0$ for all i.

Those α_j for which all $a_i > 0$ are called **Positive Roots**. The set of these roots is called a **Positive System**. Those α_j for which all $a_i < 0$ are called **Negative Roots**. The set of these roots is called a **Negative System**.

The reflections associated with simple roots are called **Simple Reflections**.

Image: A match a ma

Definition

Let V be an vector space. Let $\Sigma = \{\alpha_1, \ldots, \alpha_n\}$ be a Root System of V. Let $\Delta = \{\beta_1, \ldots, \beta_k\}$, $k \leq n$. Δ is a **Simple System** of Φ if it is a vector space basis of V and for all $\alpha_j \in \Sigma$

$$\alpha_j = \sum_{i=1}^{\kappa} a_i \beta_i,$$

where, for each j, $a_i > 0$ or $a_i < 0$ for all i.

Those α_j for which all $a_i > 0$ are called **Positive Roots**. The set of these roots is called a **Positive System**. Those α_j for which all $a_i < 0$ are called **Negative Roots**. The set of these roots is called a **Negative System**.

The reflections associated with simple roots are called **Simple Reflections**.

Image: A match a ma

Definition

Let V be an vector space. Let $\Sigma = \{\alpha_1, \ldots, \alpha_n\}$ be a Root System of V. Let $\Delta = \{\beta_1, \ldots, \beta_k\}$, $k \leq n$. Δ is a **Simple System** of Φ if it is a vector space basis of V and for all $\alpha_j \in \Sigma$

$$\alpha_j = \sum_{i=1}^k a_i \beta_i,$$

where, for each j, $a_i > 0$ or $a_i < 0$ for all i.

Those α_j for which all $a_i > 0$ are called **Positive Roots**. The set of these roots is called a **Positive System**. Those α_j for which all $a_i < 0$ are called **Negative Roots**. The set of these roots is called a **Negative System**.

The reflections associated with simple roots are called **Simple Reflections**.

(日) (同) (日) (日)

Definition

Let V be an vector space. Let $\Sigma = \{\alpha_1, \ldots, \alpha_n\}$ be a Root System of V. Let $\Delta = \{\beta_1, \ldots, \beta_k\}$, $k \leq n$. Δ is a **Simple System** of Φ if it is a vector space basis of V and for all $\alpha_j \in \Sigma$

$$\alpha_j = \sum_{i=1}^{k} a_i \beta_i,$$

where, for each *j*, $a_i > 0$ or $a_i < 0$ for all *i*.

Those α_j for which all $a_i > 0$ are called **Positive Roots**. The set of these roots is called a **Positive System**. Those α_j for which all $a_i < 0$ are called **Negative Roots**. The set of these roots is called a **Negative System**.

The reflections associated with simple roots are called Simple Reflections.

Image: A math a math

Definition

Let V be an vector space. Let $\Sigma = \{\alpha_1, \ldots, \alpha_n\}$ be a Root System of V. Let $\Delta = \{\beta_1, \ldots, \beta_k\}$, $k \leq n$. Δ is a **Simple System** of Φ if it is a vector space basis of V and for all $\alpha_j \in \Sigma$

$$\alpha_j = \sum_{i=1}^{k} a_i \beta_i,$$

where, for each *j*, $a_i > 0$ or $a_i < 0$ for all *i*.

Those α_j for which all $a_i > 0$ are called **Positive Roots**. The set of these roots is called a **Positive System**. Those α_j for which all $a_i < 0$ are called **Negative Roots**. The set of these roots is called a **Negative System**.

The reflections associated with simple roots are called **Simple Reflections**.

Definition

Let V be an vector space. Let $\Sigma = \{\alpha_1, \ldots, \alpha_n\}$ be a Root System of V. Let $\Delta = \{\beta_1, \ldots, \beta_k\}$, $k \leq n$. Δ is a **Simple System** of Φ if it is a vector space basis of V and for all $\alpha_j \in \Sigma$

$$\alpha_j = \sum_{i=1}^{k} a_i \beta_i,$$

where, for each *j*, $a_i > 0$ or $a_i < 0$ for all *i*.

Those α_j for which all $a_i > 0$ are called **Positive Roots**. The set of these roots is called a **Positive System**. Those α_j for which all $a_i < 0$ are called **Negative Roots**. The set of these roots is called a **Negative System**.

The reflections associated with simple roots are called **Simple Reflections**.

Let Σ be a root system in V, and let Δ be a simple system of Σ . Let W be the reflection group associated to Σ . Then W is generated by simple reflections in the following way:

$$W = \langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta | (s_{\alpha} s_{\beta})^{m_{\alpha,\beta}} = 1 \rangle$$

where $m_{\alpha,\beta}$ is the order of $s_{\alpha}s_{\beta}$ in W.

Example

Suppose $\Sigma = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta = \{s_{(1,0)}, s_{(-1,1)}\}$. Let 1 = (1,0), 2 = (-1,1). Then from our Coxeter Relations: $W = \{1, s_1, s_2, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\}$

Let Σ be a root system in V, and let Δ be a simple system of Σ . Let W be the reflection group associated to Σ . Then W is generated by simple reflections in the following way:

$$W = \langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta | (s_{\alpha} s_{\beta})^{m_{\alpha,\beta}} = 1 \rangle$$

where $m_{\alpha,\beta}$ is the order of $s_{\alpha}s_{\beta}$ in W.

Example

Suppose $\Sigma = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta = \{s_{(1,0)}, s_{(-1,1)}\}$. Let 1 = (1,0), 2 = (-1,1). Then from our Coxeter Relations: $W = \{1, s_1, s_2, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\}$

Let Σ be a root system in V, and let Δ be a simple system of Σ . Let W be the reflection group associated to Σ . Then W is generated by simple reflections in the following way:

$$W = \langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta | (s_{\alpha}s_{\beta})^{m_{\alpha,\beta}} = 1 \rangle$$

where $m_{\alpha,\beta}$ is the order of $s_{\alpha}s_{\beta}$ in W.

Example

Suppose $\Sigma = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta = \{s_{(1,0)}, s_{(-1,1)}\}$. Let 1 = (1,0), 2 = (-1,1). Then from our Coxeter Relations: $W = \{1, s_1, s_2, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\}$

Let Σ be a root system in V, and let Δ be a simple system of Σ . Let W be the reflection group associated to Σ . Then W is generated by simple reflections in the following way:

$$W = \langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta | (s_{\alpha}s_{\beta})^{m_{\alpha,\beta}} = 1 \rangle$$

where $m_{\alpha,\beta}$ is the order of $s_{\alpha}s_{\beta}$ in W.

Example

Suppose $\Sigma = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta = \{s_{(1,0)}, s_{(-1,1)}\}$. Let 1 = (1,0), 2 = (-1,1). Then from our Coxeter Relations: $W = \{1, s_1, s_2, s_{12}, s_{21}, s_{121}, s_{212}, s_{121}\}$

イロト 不得下 イヨト イヨト

Let Σ be a root system in V, and let Δ be a simple system of Σ . Let W be the reflection group associated to Σ . Then W is generated by simple reflections in the following way:

$$W = \langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta | (s_{\alpha}s_{\beta})^{m_{\alpha,\beta}} = 1 \rangle$$

where $m_{\alpha,\beta}$ is the order of $s_{\alpha}s_{\beta}$ in W.

Example

Suppose $\Sigma = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta = \{s_{(1,0)}, s_{(-1,1)}\}$. Let 1 = (1,0), 2 = (-1,1). Then from our Coxeter Relations: $W = \{1, s_1, s_2, s_{12}, s_{21}, s_{121}, s_{212}, s_{121}\}$

Let Σ be a root system in V, and let Δ be a simple system of Σ . Let W be the reflection group associated to Σ . Then W is generated by simple reflections in the following way:

$$W = \langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta | (s_{\alpha}s_{\beta})^{m_{\alpha,\beta}} = 1 \rangle$$

where $m_{\alpha,\beta}$ is the order of $s_{\alpha}s_{\beta}$ in W.

Example

Suppose $\Sigma = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta = \{s_{(1,0)}, s_{(-1,1)}\}$. Let 1 = (1,0), 2 = (-1,1). Then from our Coxeter Relations: $W = \{1, s_1, s_2, s_{12}, s_{21}, s_{121}, s_{212}, s_{121}\}$

イロト イ理ト イヨト イヨト

Let Σ be a root system in V, and let Δ be a simple system of Σ . Let W be the reflection group associated to Σ . Then W is generated by simple reflections in the following way:

$$W = \langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta | (s_{\alpha}s_{\beta})^{m_{\alpha,\beta}} = 1 \rangle$$

where $m_{\alpha,\beta}$ is the order of $s_{\alpha}s_{\beta}$ in W.

Example

Suppose $\Sigma = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta = \{s_{(1,0)}, s_{(-1,1)}\}$. Let 1 = (1,0), 2 = (-1,1). Then from our Coxeter Relations: $W = \{1, s_1, s_2, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\}$

Let Σ be a root system in V, and let Δ be a simple system of Σ . Let W be the reflection group associated to Σ . Then W is generated by simple reflections in the following way:

$$W = \langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta | (s_{\alpha}s_{\beta})^{m_{\alpha,\beta}} = 1 \rangle$$

where $m_{\alpha,\beta}$ is the order of $s_{\alpha}s_{\beta}$ in W.

Example

Suppose $\Sigma = \{\pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta = \{s_{(1,0)}, s_{(-1,1)}\}$. Let 1 = (1,0), 2 = (-1,1). Then from our Coxeter Relations: $W = \{1, s_1, s_2, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\}$

Definition

Let R be a commutative ring.

Let $F(x, y) = x + y + \sum_{i,j} a_{ij} x^i y^j$, $a_{ij} \in R$, be a formal power series in variables x and y.

(F, R) is a Formal Group Law (FGL) if

1. F(x, 0) = F(0, x)

2.
$$F(x, y) = F(y, x)$$

3.
$$F(F(x, y), z) = F(x, F(y, z))$$

Notation: $F(x, y) = x +_F y$

Definition

Let *R* be a commutative ring. Let $F(x, y) = x + y + \sum_{i,j} a_{ij} x^i y^j$, $a_{ij} \in R$, be a formal power series in variables *x* and *y*. (*F*, *R*) is a **Formal Group Law** (FGL) if 1. F(x, 0) = F(0, x)2. F(x, y) = F(y, x)3. F(F(x, y), z) = F(x, F(y, z))

Notation: $F(x, y) = x +_F y$

Definition

Let *R* be a commutative ring. Let $F(x, y) = x + y + \sum_{i,j} a_{ij} x^i y^j$, $a_{ij} \in R$, be a formal power series in variables *x* and *y*. (*F*, *R*) is a **Formal Group Law** (FGL) if 1. F(x, 0) = F(0, x)2. F(x, y) = F(y, x)3. E(E(x, y), z) = E(x, E(y, z))

Notation: $F(x, y) = x +_F y$

Definition

Let *R* be a commutative ring. Let $F(x, y) = x + y + \sum_{i,j} a_{ij} x^i y^j$, $a_{ij} \in R$, be a formal power series in variables *x* and *y*. (*F*, *R*) is a **Formal Group Law** (FGL) if 1. F(x, 0) = F(0, x)

2. F(x, y) = F(y, x)

3. F(F(x, y), z) = F(x, F(y, z))

Notation: $F(x, y) = x +_F y$

Definition

Let *R* be a commutative ring. Let $F(x, y) = x + y + \sum_{i,j} a_{ij}x^iy^j$, $a_{ij} \in R$, be a formal power series in variables *x* and *y*. (*F*, *R*) is a **Formal Group Law** (FGL) if 1. F(x, 0) = F(0, x)

1.
$$F(x, 0) = F(0, x)$$

2. $F(x, y) = F(y, x)$
3. $F(F(x, y), z) = F(x, F(y, z))$

Notation: $F(x, y) = x +_F y$

Definition

Let *R* be a commutative ring. Let $F(x, y) = x + y + \sum_{i,j} a_{ij} x^i y^j$, $a_{ij} \in R$, be a formal power series in variables *x* and *y*. (*F*, *R*) is a **Formal Group Law** (FGL) if 1. F(x, 0) = F(0, x)2. F(x, y) = F(y, x)

3.
$$F(F(x, y), z) = F(x, F(y, z))$$

Notation: $F(x, y) = x +_F y$

Definition

Let *R* be a commutative ring. Let $F(x, y) = x + y + \sum_{i,j} a_{ij} x^i y^j$, $a_{ij} \in R$, be a formal power series in variables *x* and *y*. (*F*, *R*) is a **Formal Group Law** (FGL) if 1. F(x, 0) = F(0, x)2. F(x, y) = F(y, x)3. F(F(x, y), z) = F(x, F(y, z))

Notation: $F(x, y) = x +_F y$

Example

Let F be the additive FGL. Then

$$F(x,y) = x + y$$

Here, -Fx = -x

Example

Let (F, R) be the multiplicative FGL, and let $\beta \in R$, $\beta \neq 0$. Then

$$F(x,y) = x + y - \beta xy$$

Here, $-Fx = \frac{x}{\beta x - 1} = -x(1 + \beta x + (\beta x)^2 + ...) = -x - (\beta x)^2 - (\beta x)^3 - ...$

イロト イヨト イヨト

Example

Let F be the additive FGL. Then

$$F(x,y) = x + y$$

Here, -Fx = -x

Example

Let (F, R) be the multiplicative FGL, and let $\beta \in R$, $\beta \neq 0$. Then

$$F(x,y) = x + y - \beta xy$$

Here, $-Fx = \frac{x}{\beta x - 1} = -x(1 + \beta x + (\beta x)^2 + ...) = -x - (\beta x)^2 - (\beta x)^3 - ...$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Example

Let F be the additive FGL. Then

$$F(x,y) = x + y$$

Here, -Fx = -x

Example

Let (F, R) be the multiplicative FGL, and let $\beta \in R$, $\beta \neq 0$. Then

$$F(x,y) = x + y - \beta xy$$

Here, $-Fx = \frac{x}{\beta x - 1} = -x(1 + \beta x + (\beta x)^2 + ...) = -x - (\beta x)^2 - (\beta x)^3 - ...$

イロト 不得下 イヨト イヨト 二日

Example

Let F be the additive FGL. Then

$$F(x,y) = x + y$$

Here, -Fx = -x

Example

Let (F, R) be the multiplicative FGL, and let $\beta \in R$, $\beta \neq 0$. Then

$$F(x,y) = x + y - \beta xy$$

Here, $-_{F}x = \frac{x}{\beta x - 1} = -x(1 + \beta x + (\beta x)^{2} + ...) = -x - (\beta x)^{2} - (\beta x)^{3} - ...$

イロト 不得下 イヨト イヨト 二日

Example

Let (F, R) be the Lorentz FGL, and let $\beta \in R$, $\beta \neq 0$. Then

$$F(x,y) = \frac{x+y}{1+\beta xy} = (x+y)(1+(-\beta xy)+(-\beta xy)^2+...)$$

Here, -FX = -X

Example

Let (F, \mathbb{L}) be the universal FGL. Then

$$F(x,y) = x + y + \sum_{i,j} a_{ij} x^i y^j$$

where the variables a_{ij} are resticted by the associativity and commutativity of the FGL. They lie in the Lazard ring \mathbb{L} .

Example

Let (F, R) be the Lorentz FGL, and let $\beta \in R$, $\beta \neq 0$. Then

$$F(x,y) = \frac{x+y}{1+\beta xy} = (x+y)(1+(-\beta xy)+(-\beta xy)^2+...)$$

Here, -Fx = -x

Example

Let (F, \mathbb{L}) be the universal FGL. Then

$$F(x,y) = x + y + \sum_{i,j} a_{ij} x^i y^j$$

where the variables a_{ij} are resticted by the associativity and commutativity of the FGL. They lie in the Lazard ring \mathbb{L} .

Let (F, R) be the Lorentz FGL, and let $\beta \in R$, $\beta \neq 0$. Then

$$F(x,y) = \frac{x+y}{1+\beta xy} = (x+y)(1+(-\beta xy)+(-\beta xy)^2+...)$$

Here, -Fx = -x

Example

Let (F, \mathbb{L}) be the universal FGL. Then

$$F(x,y) = x + y + \sum_{i,j} a_{ij} x^i y^j$$

where the variables a_{ij} are resticted by the associativity and commutativity of the FGL. They lie in the Lazard ring \mathbb{L} .
Formal Group Algebra

Let (F, R) be an FGL, and suppose Λ is a finite abelian group. Let $R[[x_{\lambda}]] = R[[\{x_{\lambda} | \lambda \in \Lambda\}]]$ be a formal power series over R in variables x_{λ} indexed by $\lambda \in \Lambda$.

Let J_F be the smallest ideal generated by the elements

 x_0 and $x_{\lambda_1} +_F x_{\lambda_2} - x_{\lambda_1 + \lambda_2}$

Definition

The quotient is called the **Formal Group Ring/Algebra** of Λ with respect to (F, R):

 $R[[\Lambda]]_F = R[[x_{\lambda}]]/J_F$

Let (F, R) be an FGL, and suppose Λ is a finite abelian group. Let $R[[x_{\lambda}]] = R[[\{x_{\lambda} | \lambda \in \Lambda\}]]$ be a formal power series over R in variables x_{λ} indexed by $\lambda \in \Lambda$.

Let J_F be the smallest ideal generated by the elements

 x_0 and $x_{\lambda_1} +_F x_{\lambda_2} - x_{\lambda_1 + \lambda_2}$

Definition

The quotient is called the **Formal Group Ring/Algebra** of Λ with respect to (F, R):

 $R[[\Lambda]]_F = R[[x_{\lambda}]]/J_F$

Let (F, R) be an FGL, and suppose Λ is a finite abelian group. Let $R[[x_{\lambda}]] = R[[\{x_{\lambda} | \lambda \in \Lambda\}]]$ be a formal power series over R in variables x_{λ} indexed by $\lambda \in \Lambda$.

Let J_F be the smallest ideal generated by the elements

 x_0 and $x_{\lambda_1} +_F x_{\lambda_2} - x_{\lambda_1 + \lambda_2}$

Definition

The quotient is called the **Formal Group Ring/Algebra** of Λ with respect to (F, R):

 $R[[\Lambda]]_F = R[[x_{\lambda}]]/J_F$

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_F = Q^{(R,F)}$ the field of fractions generated by $R[[\Lambda]]_F$ and $\{x_{\lambda}^{-1}|\lambda \in \Lambda \setminus \{0\}\}$. *W* acts on a polynomial $f(x_{\alpha_1}, ..., x_{\alpha_n}) \in Q_F$ in the following way:

$$w(f(x_{\alpha_1},...,x_{\alpha_n})) = f(x_{w(\alpha_1)},...,x_{w(\alpha_n)})$$

Definition

The left *R*-module $Q_W := Q_F \otimes_R R[W]$ is the **Twisted Formal Group Algebra**, with multiplication given by

$$(q_1\delta_{w_1})(q_2\delta_{w_2}) = (q_1w_1(q_2))(\delta_{w_1}\delta_{w_2})$$

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_F = Q^{(R,F)}$ the field of fractions generated by $R[[\Lambda]]_F$ and $\{x_{\lambda}^{-1} | \lambda \in \Lambda \setminus \{0\}\}$. *W* acts on a polynomial $f(x_{\alpha_1}, ..., x_{\alpha_n}) \in Q_F$ in the following way:

$$w(f(x_{\alpha_1},...,x_{\alpha_n})) = f(x_{w(\alpha_1)},...,x_{w(\alpha_n)})$$

Definition

The left *R*-module $Q_W := Q_F \otimes_R R[W]$ is the **Twisted Formal Group Algebra**, with multiplication given by

$$(q_1\delta_{w_1})(q_2\delta_{w_2}) = (q_1w_1(q_2))(\delta_{w_1}\delta_{w_2})$$

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_F = Q^{(R,F)}$ the field of fractions generated by $R[[\Lambda]]_F$ and $\{x_{\lambda}^{-1} | \lambda \in \Lambda \setminus \{0\}\}$. *W* acts on a polynomial $f(x_{\alpha_1}, ..., x_{\alpha_n}) \in Q_F$ in the following way:

$$w(f(x_{\alpha_1},...,x_{\alpha_n}))=f(x_{w(\alpha_1)},...,x_{w(\alpha_n)})$$

Definition

The left *R*-module $Q_W := Q_F \otimes_R R[W]$ is the **Twisted Formal Group Algebra**, with multiplication given by

$$(q_1\delta_{w_1})(q_2\delta_{w_2}) = (q_1w_1(q_2))(\delta_{w_1}\delta_{w_2})$$

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_F = Q^{(R,F)}$ the field of fractions generated by $R[[\Lambda]]_F$ and $\{x_{\lambda}^{-1} | \lambda \in \Lambda \setminus \{0\}\}$. *W* acts on a polynomial $f(x_{\alpha_1}, ..., x_{\alpha_n}) \in Q_F$ in the following way:

$$w(f(x_{\alpha_1},...,x_{\alpha_n}))=f(x_{w(\alpha_1)},...,x_{w(\alpha_n)})$$

Definition

The left *R*-module $Q_W := Q_F \otimes_R R[W]$ is the **Twisted Formal Group Algebra**, with multiplication given by

$$(q_1\delta_{w_1})(q_2\delta_{w_2})=(q_1w_1(q_2))(\delta_{w_1}\delta_{w_2})$$

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_F = Q^{(R,F)}$ the field of fractions generated by $R[[\Lambda]]_F$ and $\{x_{\lambda}^{-1}|\lambda \in \Lambda \setminus \{0\}\}$. *W* acts on a polynomial $f(x_{\alpha_1}, ..., x_{\alpha_n}) \in Q_F$ in the following way:

$$w(f(x_{\alpha_1},...,x_{\alpha_n}))=f(x_{w(\alpha_1)},...,x_{w(\alpha_n)})$$

Definition

The left *R*-module $Q_W := Q_F \otimes_R R[W]$ is the **Twisted Formal Group Algebra**, with multiplication given by

$$(q_1\delta_{w_1})(q_2\delta_{w_2})=(q_1w_1(q_2))(\delta_{w_1}\delta_{w_2})$$

Definition

Let $\alpha \in \Sigma$. The **Formal Demazure Element** of α with respect to the FGL, (*F*, *R*), is defined as

$$X^F_{lpha} = rac{1}{x_{lpha}} (1 - \delta_{s_{lpha}})$$

Definition

The **Formal Demazure Algebra**, D_W^F , is the *R*-subalgebra of Q_W generated by the elements X_{α} .

The Formal Affine Demazure Algebra, D_W^F , is the *R*-subalgebra of Q_W generated by $R[[\Lambda]]$ and the elements X_{α}

Definition

Let $\alpha \in \Sigma$. The **Formal Demazure Element** of α with respect to the FGL, (*F*, *R*), is defined as

$$X^F_{lpha} = rac{1}{x_{lpha}} (1 - \delta_{s_{lpha}})$$

Definition

The **Formal Demazure Algebra**, D_W^F , is the *R*-subalgebra of Q_W generated by the elements X_{α} .

The Formal Affine Demazure Algebra, D_W^F , is the *R*-subalgebra of Q_W generated by $R[[\Lambda]]$ and the elements X_{α}

Definition

Let $\alpha \in \Sigma$. The **Formal Demazure Element** of α with respect to the FGL, (*F*, *R*), is defined as

$$X^F_{lpha} = rac{1}{x_{lpha}} (1 - \delta_{s_{lpha}})$$

Definition

The **Formal Demazure Algebra**, D_W^F , is the *R*-subalgebra of Q_W generated by the elements X_{α} .

The Formal Affine Demazure Algebra, D_W^F , is the *R*-subalgebra of Q_W generated by $R[[\Lambda]]$ and the elements X_{α}

Question: How can we describe D_W^F when $W = I_2(5)$ is the dihedral group of order 5, and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_2(5)$. Fix FGL (F, R).

Notations/Assumptions:

- For $\lambda \in \Sigma$, $\lambda = \pm \alpha_i$ for some i = 1, ..., 5
- Denote by $x_{-\alpha_i}$, i = 1, ..., 5, the formal inverse of x_{α_i} under (F, R)
- Denote by α_1 and α_2 our simple roots of Σ
- Set $X_{\alpha_i} = X_i$ for i = 1, ..., 5

Question: How can we describe D_W^F when $W = I_2(5)$ is the dihedral group of order 5, and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_2(5)$. Fix FGL (F, R).

Notations/Assumptions:

- For $\lambda \in \Sigma$, $\lambda = \pm \alpha_i$ for some i = 1, ..., 5
- Denote by $x_{-\alpha_i}$, i = 1, ..., 5, the formal inverse of x_{α_i} under (F, R)
- Denote by α_1 and α_2 our simple roots of Σ
- Set $X_{\alpha_i} = X_i$ for i = 1, ..., 5

Question: How can we describe D_W^F when $W = I_2(5)$ is the dihedral group of order 5, and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_2(5)$. Fix FGL (F, R).

Notations/Assumptions:

• For
$$\lambda \in \Sigma$$
, $\lambda = \pm \alpha_i$ for some $i = 1, ..., 5$

• Denote by $x_{-\alpha_i}$, i = 1, ..., 5, the formal inverse of x_{α_i} under (F, R)

• Denote by α_1 and α_2 our simple roots of Σ

• Set
$$X_{\alpha_i} = X_i$$
 for $i = 1, ..., 5$

Question: How can we describe D_W^F when $W = I_2(5)$ is the dihedral group of order 5, and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_2(5)$. Fix FGL (F, R).

Notations/Assumptions:

- For $\lambda \in \Sigma$, $\lambda = \pm \alpha_i$ for some i = 1, ..., 5
- Denote by $x_{-\alpha_i}$, i = 1, ..., 5, the formal inverse of x_{α_i} under (F, R)
- Denote by α_1 and α_2 our simple roots of Σ
- Set $X_{\alpha_i} = X_i$ for i = 1, ..., 5

Question: How can we describe D_W^F when $W = I_2(5)$ is the dihedral group of order 5, and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_2(5)$. Fix FGL (F, R).

Notations/Assumptions:

- For $\lambda \in \Sigma$, $\lambda = \pm \alpha_i$ for some i = 1, ..., 5
- Denote by $x_{-\alpha_i}$, i = 1, ..., 5, the formal inverse of x_{α_i} under (F, R)
- Denote by α_1 and α_2 our simple roots of Σ
- Set $X_{\alpha_i} = X_i$ for i = 1, ..., 5

Question: How can we describe D_W^F when $W = I_2(5)$ is the dihedral group of order 5, and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_2(5)$. Fix FGL (F, R).

Notations/Assumptions:

- For $\lambda \in \Sigma$, $\lambda = \pm \alpha_i$ for some i = 1, ..., 5
- Denote by $x_{-\alpha_i}$, i = 1, ..., 5, the formal inverse of x_{α_i} under (F, R)
- Denote by α_1 and α_2 our simple roots of Σ

• Set
$$X_{\alpha_i} = X_i$$
 for $i = 1, ..., 5$

Question: How can we describe D_W^F when $W = I_2(5)$ is the dihedral group of order 5, and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_2(5)$. Fix FGL (F, R).

Notations/Assumptions:

- For $\lambda \in \Sigma$, $\lambda = \pm \alpha_i$ for some i = 1, ..., 5
- Denote by $x_{-\alpha_i}$, i = 1, ..., 5, the formal inverse of x_{α_i} under (F, R)
- Denote by α_1 and α_2 our simple roots of Σ
- Set $X_{\alpha_i} = X_i$ for i = 1, ..., 5

Notation: Let $s_{\alpha_i} = s_i$ and $\alpha_i = i$. The following table represents the permuatation of roots obtained after applying a reflection of $l_2(5)$ to the roots of Σ

1	1	-1	2	-2	3	-3	4	-4	5	-5
<i>s</i> ₁	-1	1	-4	4	-5	5	-2	2	-3	3
<i>s</i> ₂	-5	5	-2	2	-4	4	-3	3	-1	1
<i>s</i> ₁₂	3	-3	4	-4	2	-2	5	-5	1	-1
<i>s</i> ₂₁	5	-5	3	-3	1	-1	2	-2	4	-4
<i>s</i> ₁₂₁	-3	3	-5	5	-1	1	-4	4	-2	2
<i>s</i> ₂₁₂	-4	4	-3	3	-2	2	-1	1	-5	5
<i>s</i> ₁₂₁₂	2	-2	5	-5	4	-4	1	-1	3	-3
<i>s</i> ₂₁₂₁	4	-4	1	-1	5	-5	3	-3	2	-2
<i>s</i> ₁₂₁₂₁	-2	2	-1	1	-3	3	-5	5	-4	4

Notation: Let $s_{\alpha_i} = s_i$ and $\alpha_i = i$. The following table represents the permuatation of roots obtained after applying a reflection of $l_2(5)$ to the roots of Σ

1	1	-1	2	-2	3	-3	4	-4	5	-5
<i>s</i> 1	-1	1	-4	4	-5	5	-2	2	-3	3
<i>s</i> ₂	-5	5	-2	2	-4	4	-3	3	-1	1
<i>s</i> ₁₂	3	-3	4	-4	2	-2	5	-5	1	-1
<i>s</i> ₂₁	5	-5	3	-3	1	-1	2	-2	4	-4
<i>s</i> ₁₂₁	-3	3	-5	5	-1	1	-4	4	-2	2
<i>s</i> ₂₁₂	-4	4	-3	3	-2	2	-1	1	-5	5
<i>s</i> ₁₂₁₂	2	-2	5	-5	4	-4	1	-1	3	-3
<i>s</i> ₂₁₂₁	4	-4	1	-1	5	-5	3	-3	2	-2
<i>s</i> ₁₂₁₂₁	-2	2	-1	1	-3	3	-5	5	-4	4

13 / 20

Generating $D_{l_2(5)}^F$

Theorem

Set $s_j s_k = s_{jk}$. Let $I_2(m) = I_2(5)$. Then

 $X_{21212} - X_{12121} = (k_{\alpha_2}^3 X_{212} + s_{12121} (k_{-\alpha_2}^3) X_{121}) + (k_{\alpha_2}^2 X_{12} + s_{12121} (k_{-\alpha_2}^2) X_{21}) + (k_{\alpha_2}^1) X_2 + s_{12121} (k_{-\alpha_2}^1) X_1)$

where $k_{-\alpha_2}^i$ is obtained from $k_{\alpha_2}^i$ by applying the map $x_{\pm i} \mapsto x_{\mp i}$, and

 $\begin{aligned} k_{\alpha_2}^3 &= \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_5)}} - \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4}} - \frac{1}{x_{(-\alpha_2)} x_{(-\alpha_3)} x_{(-\alpha_4)} x_{(-\alpha_5)}} + \\ \frac{1}{x_{\alpha_1} x_{(-\alpha_2)} x_{(-\alpha_4)} x_{(-\alpha_5)}} - \frac{1}{x_{\alpha_1} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} \\ k_{\alpha_2}^2 &= -\frac{1}{x_{\alpha_2} x_{(-\alpha_3)} x_{(-\alpha_4)}} + \frac{1}{x_{\alpha_2} x_{\alpha_3} x_{\alpha_4}} + \frac{1}{x_{\alpha_2} x_{(-\alpha_1)} x_{(-\alpha_4)}} + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{(-\alpha_4)}} - \\ \frac{1}{x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_5)}} - \frac{1}{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5}} \\ k_{\alpha_2}^1 &= \frac{1}{x_{(-\alpha_3)} x_{(-\alpha_4)}} + \frac{1}{x_{(-\alpha_2)} x_{(-\alpha_5)}} - \frac{1}{x_{\alpha_1} x_{(-\alpha_4)}} + \frac{1}{x_{\alpha_1} x_{\alpha_2}} + \frac{1}{x_{\alpha_3} x_{\alpha_5}} \end{aligned}$

Generating $D_{l_2(5)}^F$

Theorem

Set
$$s_j s_k = s_{jk}$$
. Let $I_2(m) = I_2(5)$. Then

$$\begin{array}{l} X_{21212}-X_{12121}=(k_{\alpha_2}^3X_{212}+s_{12121}(k_{-\alpha_2}^3)X_{121})+(k_{\alpha_2}^2X_{12}+s_{12121}(k_{-\alpha_2}^2)X_{21})+(k_{\alpha_2}^1)X_2+s_{12121}(k_{-\alpha_2}^1)X_1)\end{array}$$

where $k_{-\alpha_2}^i$ is obtained from $k_{\alpha_2}^i$ by applying the map $x_{\pm i}\mapsto x_{\mp i}$, and

$$\begin{aligned} k_{\alpha_2}^3 &= \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_5)}} - \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4}} - \frac{1}{x_{(-\alpha_2)} x_{(-\alpha_3)} x_{(-\alpha_4)} x_{(-\alpha_5)}} + \\ \frac{1}{x_{\alpha_1} x_{(-\alpha_2)} x_{(-\alpha_4)} x_{(-\alpha_5)}} - \frac{1}{x_{\alpha_1} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} \\ k_{\alpha_2}^2 &= -\frac{1}{x_{\alpha_2} x_{(-\alpha_3)} x_{(-\alpha_4)}} + \frac{1}{x_{\alpha_2} x_{\alpha_3} x_{\alpha_4}} + \frac{1}{x_{\alpha_2} x_{(-\alpha_1)} x_{(-\alpha_4)}} + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{(-\alpha_4)}} - \\ \frac{1}{x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_5)}} - \frac{1}{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5}} - \frac{1}{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5}} + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{(-\alpha_4)}} + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{(-\alpha_4)}} - \\ k_{\alpha_2}^1 &= \frac{1}{x_{(-\alpha_3)} x_{(-\alpha_4)}} + \frac{1}{x_{(-\alpha_2)} x_{(-\alpha_5)}} - \frac{1}{x_{\alpha_1} x_{(-\alpha_4)}} + \frac{1}{x_{\alpha_1} x_{\alpha_2}} + \frac{1}{x_{\alpha_3} x_{\alpha_5}} - \frac{1}{x_{\alpha_5} - \frac{1}{x_{\alpha_5} x_{\alpha_5}} - \frac{1}{x_{\alpha_5} - \frac{$$

Generating $D_{l_2(5)}^F$ - Proof

To begin the proof, we will write out explicitly the products of X_1 and X_2 ending in X_2 .

$$\begin{split} X_{2} &= \frac{1}{x_{\alpha_{2}}} (\mathbf{1} - \delta_{2}) \\ X_{1}X_{2} &= \frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}} (\mathbf{1} - \delta_{2}) + \frac{1}{x_{\alpha_{1}}x_{(-\alpha_{4})}} (\delta_{12} - \delta_{1}) \\ X_{2}X_{1}X_{2} &= X_{2}(X_{1}X_{2}) = \\ (\frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}^{2}} + \frac{1}{x_{\alpha_{2}}x_{(-\alpha_{2})}x_{(-\alpha_{5})}}) (\mathbf{1} - \delta_{2}) + \frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}x_{(-\alpha_{4})}} (\delta_{12} - \delta_{1}) + \frac{1}{x_{\alpha_{2}}x_{\alpha_{3}}x_{(-\alpha_{5})}} (\delta_{21} - \delta_{212}) \\ X_{2}X_{1}X_{2}X_{1}X_{2} &= (X_{2}X_{1})(X_{2}X_{1}X_{2}) = \\ + (\frac{1}{x_{\alpha_{1}}^{2}x_{\alpha_{2}}^{2}} + \frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}^{2}x_{(-\alpha_{2})}x_{(-\alpha_{5})}} + \frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}^{2}x_{(-\alpha_{1})}x_{(-\alpha_{4})}} + \frac{1}{x_{\alpha_{2}}x_{\alpha_{3}}^{2}x_{(-\alpha_{5})}} + \frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}^{2}x_{(-\alpha_{2})}x_{(-\alpha_{5})}} + \\ + (\frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}x_{(-\alpha_{1})}x_{(-\alpha_{4})}^{2}} + \frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{3}}x_{\alpha_{4}}x_{(-\alpha_{4})}} + \frac{1}{x_{\alpha_{2}}x_{\alpha_{3}}x_{(-\alpha_{4})}x_{(-\alpha_{5})}} + \frac{1}{x_{\alpha_{2}}x_{\alpha_{3}}x_{(-\alpha_{2})}x_{(-\alpha_{5})}^{2}}) (\delta_{12} - \\ \delta_{1}) + \\ + (\frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{3}}x_{(-\alpha_{5})}} + \frac{1}{x_{\alpha_{2}}x_{\alpha_{3}}^{2}x_{\alpha_{5}}x_{(-\alpha_{5})}} + \frac{1}{x_{\alpha_{2}}x_{\alpha_{3}}x_{(-\alpha_{5})}} + \frac{1}{x_{\alpha_{2}}x_{\alpha_{3}}x_{(-\alpha_{2})}x_{(-\alpha_{5})}^{2}}) (\delta_{21} - \\ \delta_{212}) + \\ + \frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{3}}x_{(-\alpha_{4})}x_{(-\alpha_{5})}} (\delta_{1212} - \delta_{121} + \delta_{2121} - \delta_{21212}) \end{split}$$

3

- ∢ ⊢⊒ →

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

$$\begin{aligned} & X_2 X_1 X_2 X_1 X_2 = +k_{\alpha_2}^3 (X_2 X_1 X_2) + k_{\alpha_2}^2 (X_1 X_2) + k_{\alpha_2}^1 (X_2) \\ & + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{212} - \delta_{121} + \delta_{12} + \delta_{21} - \delta_{1} - \delta_{2} + \mathbf{1}) \end{aligned}$$

Equation 2 follows by applying $s_{12121} \circ f$ to Equation 1:

$$X_1 X_2 X_1 X_2 X_1 = + s_{12121} (k_{-\alpha_2}^3) (X_1 X_2 X_1) + s_{12121} (k_{-\alpha_2}^2) (X_2 X_1) + s_{12121} (k_{-\alpha_2}^1) (X_1) + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{121} + -\delta_{212} + \delta_{21} + \delta_{12} - \delta_1 - \delta_2 + \mathbf{1})$$

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

$$\begin{aligned} & X_2 X_1 X_2 X_1 X_2 = +k_{\alpha_2}^3 (X_2 X_1 X_2) + k_{\alpha_2}^2 (X_1 X_2) + k_{\alpha_2}^1 (X_2) \\ & + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{212} - \delta_{121} + \delta_{12} + \delta_{21} - \delta_{1} - \delta_{2} + \mathbf{1}) \end{aligned}$$

Equation 2 follows by applying $s_{12121} \circ f$ to Equation 1:

$$X_1 X_2 X_1 X_2 X_1 = + s_{12121} (k_{-\alpha_2}^3) (X_1 X_2 X_1) + s_{12121} (k_{-\alpha_2}^2) (X_2 X_1) + s_{12121} (k_{-\alpha_2}^1) (X_1) + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{121} + -\delta_{212} + \delta_{21} + \delta_{12} - \delta_1 - \delta_2 + \mathbf{1})$$

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

$$\begin{aligned} & X_2 X_1 X_2 X_1 X_2 = +k_{\alpha_2}^3 (X_2 X_1 X_2) + k_{\alpha_2}^2 (X_1 X_2) + k_{\alpha_2}^1 (X_2) \\ & + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{212} - \delta_{121} + \delta_{12} + \delta_{21} - \delta_{1} - \delta_{2} + \mathbf{1}) \end{aligned}$$

Equation 2 follows by applying $s_{12121} \circ f$ to Equation 1:

$$\begin{aligned} X_1 X_2 X_1 X_2 X_1 &= + s_{12121} (k_{-\alpha_2}^3) (X_1 X_2 X_1) + s_{12121} (k_{-\alpha_2}^2) (X_2 X_1) + \\ s_{12121} (k_{-\alpha_2}^1) (X_1) &+ \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{121} + \\ &- \delta_{212} + \delta_{21} + \delta_{12} - \delta_{1} - \delta_{2} + \mathbf{1}) \end{aligned}$$

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

$$\begin{aligned} & X_2 X_1 X_2 X_1 X_2 = +k_{\alpha_2}^3 (X_2 X_1 X_2) + k_{\alpha_2}^2 (X_1 X_2) + k_{\alpha_2}^1 (X_2) \\ & + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{212} - \delta_{121} + \delta_{12} + \delta_{21} - \delta_{1} - \delta_{2} + \mathbf{1}) \end{aligned}$$

Equation 2 follows by applying $s_{12121} \circ f$ to Equation 1:

$$\begin{split} X_1 X_2 X_1 X_2 X_1 &= + s_{12121} (k_{-\alpha_2}^3) (X_1 X_2 X_1) + s_{12121} (k_{-\alpha_2}^2) (X_2 X_1) + \\ s_{12121} (k_{-\alpha_2}^1) (X_1) &+ \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{121} + \\ &- \delta_{212} + \delta_{21} + \delta_{12} - \delta_1 - \delta_2 + \mathbf{1}) \end{split}$$

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

$$\begin{aligned} & X_2 X_1 X_2 X_1 X_2 = +k_{\alpha_2}^3 (X_2 X_1 X_2) + k_{\alpha_2}^2 (X_1 X_2) + k_{\alpha_2}^1 (X_2) \\ & + \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{212} - \delta_{121} + \delta_{12} + \delta_{21} - \delta_{1} - \delta_{2} + \mathbf{1}) \end{aligned}$$

Equation 2 follows by applying $s_{12121} \circ f$ to Equation 1:

$$\begin{split} X_1 X_2 X_1 X_2 X_1 &= + s_{12121} (k_{-\alpha_2}^3) (X_1 X_2 X_1) + s_{12121} (k_{-\alpha_2}^2) (X_2 X_1) + \\ s_{12121} (k_{-\alpha_2}^1) (X_1) &+ \frac{1}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{(-\alpha_4)} x_{(-\alpha_5)}} (-\delta_{12121} + \delta_{1212} + \delta_{2121} - \delta_{121} + \\ &- \delta_{212} + \delta_{21} + \delta_{12} - \delta_1 - \delta_2 + \mathbf{1}) \end{split}$$

Example

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_j} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = -x_{\alpha_i}$. Then

$$k_{\alpha_1}^3 = k_{\alpha_2}^3 = \frac{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5} + x_{\alpha_3} x_{\alpha_4} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_4} + x_{\alpha_1} x_{\alpha_3} x_{\alpha_4}}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

$$k_{\alpha_1}^2 = k_{\alpha_2}^2 = 0$$

$$k_{\alpha_1}^1 = k_{\alpha_2}^1 = -\frac{(x_{\alpha_1} + x_{\alpha_2} + x_{\alpha_3} + x_{\alpha_4} + x_{\alpha_5})}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

Suppose $x_{\alpha_i} = \alpha_i$ for each i = 1, ..., 5. Then

$$k_{\alpha_1}^3 = k_{\alpha_1}^2 = k_{\alpha_1}^1 = 0$$
 and

$$X_1 X_2 X_1 X_2 X_1 = X_2 X_1 X_2 X_1 X_2$$

Example

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_j} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = -x_{\alpha_i}$. Then

$$k_{\alpha_1}^3 = k_{\alpha_2}^3 = \frac{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5} + x_{\alpha_3} x_{\alpha_4} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_4} + x_{\alpha_1} x_{\alpha_3} x_{\alpha_4}}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

$$k_{\alpha_1}^2 = k_{\alpha_2}^2 = 0$$

$$k_{\alpha_1}^1 = k_{\alpha_2}^1 = -\frac{(x_{\alpha_1} + x_{\alpha_2} + x_{\alpha_3} + x_{\alpha_4} + x_{\alpha_5})}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

Suppose $x_{\alpha_i} = \alpha_i$ for each i = 1, ..., 5. Then

$$k_{\alpha_1}^3 = k_{\alpha_1}^2 = k_{\alpha_1}^1 = 0$$
 and

$$X_1 X_2 X_1 X_2 X_1 = X_2 X_1 X_2 X_1 X_2$$

Image: A matrix

Example

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_j} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = -x_{\alpha_i}$. Then

$$k_{\alpha_1}^3 = k_{\alpha_2}^3 = \frac{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5} + x_{\alpha_3} x_{\alpha_4} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_4} + x_{\alpha_1} x_{\alpha_3} x_{\alpha_4}}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

$$k_{\alpha_1}^2 = k_{\alpha_2}^2 = 0$$

$$k_{\alpha_1}^1 = k_{\alpha_2}^1 = -\frac{(x_{\alpha_1} + x_{\alpha_2} + x_{\alpha_3} + x_{\alpha_4} + x_{\alpha_5})}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

Suppose $x_{\alpha_i} = \alpha_i$ for each i = 1, ..., 5. Then

$$k_{\alpha_1}^3 = k_{\alpha_1}^2 = k_{\alpha_1}^1 = 0$$
 and

$$X_1 X_2 X_1 X_2 X_1 = X_2 X_1 X_2 X_1 X_2$$

Image: A matrix

Example

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_j} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = -x_{\alpha_i}$. Then

$$k_{\alpha_1}^3 = k_{\alpha_2}^3 = \frac{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5} + x_{\alpha_3} x_{\alpha_4} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_4} + x_{\alpha_1} x_{\alpha_3} x_{\alpha_4}}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

$$k_{\alpha_1}^2 = k_{\alpha_2}^2 = 0$$

$$k_{\alpha_1}^1 = k_{\alpha_2}^1 = -\frac{(x_{\alpha_1} + x_{\alpha_2} + x_{\alpha_3} + x_{\alpha_4} + x_{\alpha_5})}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

Suppose
$$x_{\alpha_i} = \alpha_i$$
 for each $i = 1, ..., 5$. Then

$$k_{\alpha_1}^3 = k_{\alpha_1}^2 = k_{\alpha_1}^1 = 0$$
 and

$$X_1 X_2 X_1 X_2 X_1 = X_2 X_1 X_2 X_1 X_2$$

Example

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_j} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = -x_{\alpha_i}$. Then

$$k_{\alpha_1}^3 = k_{\alpha_2}^3 = \frac{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5} + x_{\alpha_3} x_{\alpha_4} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_4} + x_{\alpha_1} x_{\alpha_3} x_{\alpha_4}}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

$$k_{\alpha_1}^2 = k_{\alpha_2}^2 = 0$$

$$k_{\alpha_1}^1 = k_{\alpha_2}^1 = -\frac{(x_{\alpha_1} + x_{\alpha_2} + x_{\alpha_3} + x_{\alpha_4} + x_{\alpha_5})}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

Suppose $x_{\alpha_i} = \alpha_i$ for each i = 1, ..., 5. Then

$$k_{lpha_1}^3 = k_{lpha_1}^2 = k_{lpha_1}^1 = 0$$
 and

$$X_1 X_2 X_1 X_2 X_1 = X_2 X_1 X_2 X_1 X_2$$

Example

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_j} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = -x_{\alpha_i}$. Then

$$k_{\alpha_1}^3 = k_{\alpha_2}^3 = \frac{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5} + x_{\alpha_3} x_{\alpha_4} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_4} + x_{\alpha_1} x_{\alpha_3} x_{\alpha_4}}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

$$k_{\alpha_1}^2 = k_{\alpha_2}^2 = 0$$

$$k_{\alpha_1}^1 = k_{\alpha_2}^1 = -\frac{(x_{\alpha_1} + x_{\alpha_2} + x_{\alpha_3} + x_{\alpha_4} + x_{\alpha_5})}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

Suppose $x_{\alpha_i} = \alpha_i$ for each i = 1, ..., 5. Then

$$k_{\alpha_1}^3 = k_{\alpha_1}^2 = k_{\alpha_1}^1 = 0$$
 and

$$X_1 X_2 X_1 X_2 X_1 = X_2 X_1 X_2 X_1 X_2$$

Example

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_j} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = -x_{\alpha_i}$. Then

$$k_{\alpha_1}^3 = k_{\alpha_2}^3 = \frac{x_{\alpha_2} x_{\alpha_3} x_{\alpha_5} + x_{\alpha_3} x_{\alpha_4} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_5} + x_{\alpha_1} x_{\alpha_2} x_{\alpha_4} + x_{\alpha_1} x_{\alpha_3} x_{\alpha_4}}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

$$k_{\alpha_1}^2 = k_{\alpha_2}^2 = 0$$

$$k_{\alpha_1}^1 = k_{\alpha_2}^1 = -\frac{(x_{\alpha_1} + x_{\alpha_2} + x_{\alpha_3} + x_{\alpha_4} + x_{\alpha_5})}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

Suppose $x_{\alpha_i} = \alpha_i$ for each i = 1, ..., 5. Then

$$k_{lpha_1}^3 = k_{lpha_1}^2 = k_{lpha_1}^1 = 0$$
 and

$$X_1 X_2 X_1 X_2 X_1 = X_2 X_1 X_2 X_1 X_2$$

17 / 20
Let (F, R) be a formal group law in variables x_{α_i} , x_{α_i} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = rac{x_{\alpha_i}}{A x_{\alpha_i} - 1}$ for some $0
eq A \in R$. Then

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_i} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = \frac{x_{\alpha_i}}{Ax_{\alpha_i}-1}$ for some $0 \neq A \in R$. Then $k_{\alpha_1}^3 = k_{\alpha_2}^3 =$ $\frac{\alpha_1 - 1}{x_{\alpha_1}x_{\alpha_2}x_{\alpha_3}x_{\alpha_4}x_{\alpha_5}}(x_{\alpha_3}x_{\alpha_4}x_{\alpha_5}(1 - Ax_{\alpha_2}) + x_{\alpha_1}x_{\alpha_2}x_{\alpha_4}(1 - Ax_{\alpha_5}) + x_{\alpha_1}x_{\alpha_3}x_{\alpha_5}(1 - Ax_{\alpha_4}) + x_{\alpha_1}x_{\alpha_2}x_{\alpha_5}(1 - Ax_{\alpha_3}) + x_{\alpha_2}x_{\alpha_3}x_{\alpha_5}(1 - Ax_{\alpha_1}) + 2A^2x_{\alpha_1}x_{\alpha_2}x_{\alpha_3}x_{\alpha_4}x_{\alpha_5})$

 $x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_j} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = \frac{x_{\alpha_i}}{Ax_{\alpha_i} - 1}$ for some $0 \neq A \in R$. Then $k^3 = k^3 = k^3$

$$\frac{x_{\alpha_{1}} - x_{\alpha_{2}}}{x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{3}}x_{\alpha_{4}}x_{\alpha_{5}}}(x_{\alpha_{3}}x_{\alpha_{4}}x_{\alpha_{5}}(1 - Ax_{\alpha_{2}}) + x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{4}}(1 - Ax_{\alpha_{5}}) + x_{\alpha_{1}}x_{\alpha_{3}}x_{\alpha_{5}}(1 - Ax_{\alpha_{4}}) + x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{5}}(1 - Ax_{\alpha_{3}}) + x_{\alpha_{2}}x_{\alpha_{3}}x_{\alpha_{5}}(1 - Ax_{\alpha_{1}}) + 2A^{2}x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{3}}x_{\alpha_{4}}x_{\alpha_{5}})$$

$$k_{\alpha_1}^2 = k_{\alpha_2}^2 = 0$$

$$k_{\alpha_1}^1 = k_{\alpha_2}^1 = -\frac{(1 - Ax_{\alpha_5})((1 - Ax_{\alpha_4})((1 - Ax_{\alpha_3})((1 - Ax_{\alpha_2})x_{\alpha_1} + x_{\alpha_2}) + x_{\alpha_3}) + x_{\alpha_4}) + x_{\alpha_5}}{x_{\alpha_1} x_{\alpha_2} x_{\alpha_3} x_{\alpha_4} x_{\alpha_5}}$$

3

< 回 > < 三 > < 三 >

Let (F, R) be a formal group law in variables x_{α_i} , x_{α_j} , i, j = 1, ..., 5, such that $x_{-\alpha_i} = \frac{x_{\alpha_i}}{Ax_{\alpha_i} - 1}$ for some $0 \neq A \in R$. Then

$$\begin{split} k_{\alpha_{1}}^{3} &= k_{\alpha_{2}}^{3} = \\ \frac{1}{x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{3}}x_{\alpha_{4}}x_{\alpha_{5}}} (x_{\alpha_{3}}x_{\alpha_{4}}x_{\alpha_{5}}(1 - Ax_{\alpha_{2}}) + x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{4}}(1 - Ax_{\alpha_{5}}) + x_{\alpha_{1}}x_{\alpha_{3}}x_{\alpha_{5}}(1 - Ax_{\alpha_{2}}) + x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{3}}x_{\alpha_{5}}(1 - Ax_{\alpha_{1}}) + 2A^{2}x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{3}}x_{\alpha_{4}}x_{\alpha_{5}}) \\ k_{\alpha_{1}}^{2} &= k_{\alpha_{2}}^{2} = 0 \\ k_{\alpha_{1}}^{1} &= k_{\alpha_{2}}^{1} = -\frac{(1 - Ax_{\alpha_{5}})((1 - Ax_{\alpha_{4}})((1 - Ax_{\alpha_{3}})((1 - Ax_{\alpha_{2}})x_{\alpha_{1}} + x_{\alpha_{2}}) + x_{\alpha_{4}}) + x_{\alpha_{5}}}{x_{\alpha_{1}}x_{\alpha_{2}}x_{\alpha_{3}}x_{\alpha_{4}}x_{\alpha_{5}}} \end{split}$$

3

Let $l_2(m)$ be the dihedral group of order m. Let α_1 and α_2 be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $l_2(m)$ is generated over Q_F modulo the following relations

•
$$X_i^2 = KX_i$$
 for $i = 1, ..., m$, where $K = \frac{1}{x_i} + \frac{1}{x_{-i}}$

Let $l_2(m)$ be the dihedral group of order m. Let α_1 and α_2 be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $l_2(m)$ is generated over Q_F modulo the following relations

•
$$X_i^2 = KX_i$$
 for $i = 1, ..., m$, where $K = \frac{1}{x_i} + \frac{1}{x_{-i}}$

Let $I_2(m)$ be the dihedral group of order m. Let α_1 and α_2 be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_2(m)$ is generated over Q_F modulo the following relations

• $X_i^2 = KX_i$ for i = 1, ..., m, where $K = \frac{1}{x_i} + \frac{1}{x_{i-1}}$

Let $I_2(m)$ be the dihedral group of order m. Let α_1 and α_2 be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_2(m)$ is generated over Q_F modulo the following relations

•
$$X_i^2 = KX_i$$
 for $i = 1, ..., m$, where $K = \frac{1}{x_i} + \frac{1}{x_{-i}}$

Let $I_2(m)$ be the dihedral group of order m. Let α_1 and α_2 be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_2(m)$ is generated over Q_F modulo the following relations

•
$$X_i^2 = KX_i$$
 for $i = 1, ..., m$, where $K = \frac{1}{x_i} + \frac{1}{x_{-i}}$

- ・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $I_2(m)$ be the dihedral group of order m. Let α_1 and α_2 be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_2(m)$ is generated over Q_F modulo the following relations

•
$$X_i^2 = KX_i$$
 for $i = 1, ..., m$, where $K = \frac{1}{x_i} + \frac{1}{x_{-i}}$

- 4月 ト 4 ヨ ト - 4 ヨ ト - ヨ

Let $l_2(m)$ be the dihedral group of order m. Let $y_{\alpha_i} = \frac{1}{x_{\alpha_i}}$, i = 1, 2. We have an explicit formula for the coefficient $\kappa_{\alpha_1}^{(m-2)}$ from the previous lemma:

$$\kappa_{\alpha_1}^{(m-2)} = y_{\alpha_1}y_{\alpha_2} + s_{\alpha_1}(y_{\alpha_1}y_{\alpha_2}) + \ldots + \underbrace{s_{\alpha_1}s_{\alpha_2}\ldots}_{m-2}(y_{\alpha_1}y_{\alpha_2}) - y_{\alpha_2}s_{\alpha_1}^{(m-2)}(y_{\alpha_2}).$$

Let $l_2(m)$ be the dihedral group of order m. Let $y_{\alpha_i} = \frac{1}{x_{\alpha_i}}$, i = 1, 2. We have an explicit formula for the coefficient $\kappa_{\alpha_1}^{(m-2)}$ from the previous lemma:

$$\kappa_{\alpha_1}^{(m-2)} = y_{\alpha_1}y_{\alpha_2} + s_{\alpha_1}(y_{\alpha_1}y_{\alpha_2}) + \ldots + \underbrace{s_{\alpha_1}s_{\alpha_2}\ldots}_{m-2}(y_{\alpha_1}y_{\alpha_2}) - y_{\alpha_2}s_{\alpha_1}^{(m-2)}(y_{\alpha_2}).$$

Let $I_2(m)$ be the dihedral group of order m. Let $y_{\alpha_i} = \frac{1}{x_{\alpha_i}}$, i = 1, 2. We have an explicit formula for the coefficient $\kappa_{\alpha_1}^{(m-2)}$ from the previous lemma:

$$\kappa_{\alpha_1}^{(m-2)} = y_{\alpha_1}y_{\alpha_2} + s_{\alpha_1}(y_{\alpha_1}y_{\alpha_2}) + \ldots + \underbrace{s_{\alpha_1}s_{\alpha_2}\ldots}_{m-2}(y_{\alpha_1}y_{\alpha_2}) - y_{\alpha_2}s_{\alpha_1}^{(m-2)}(y_{\alpha_2}).$$

Let $I_2(m)$ be the dihedral group of order m. Let $y_{\alpha_i} = \frac{1}{x_{\alpha_i}}$, i = 1, 2. We have an explicit formula for the coefficient $\kappa_{\alpha_1}^{(m-2)}$ from the previous lemma:

$$\kappa_{\alpha_1}^{(m-2)} = y_{\alpha_1}y_{\alpha_2} + s_{\alpha_1}(y_{\alpha_1}y_{\alpha_2}) + \ldots + \underbrace{s_{\alpha_1}s_{\alpha_2}\ldots}_{m-2}(y_{\alpha_1}y_{\alpha_2}) - y_{\alpha_2}s_{\alpha_1}^{(m-2)}(y_{\alpha_2}).$$