Twisted Formal Group Algebras

Raj Gandhi

University of Ottawa
August 16, 2017

Reflection Group - Definition and Example

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$
s_{\alpha}(t)=t-2 \frac{(t, \alpha)}{(\alpha, \alpha)} \alpha
$$

Definition
 A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A Root System, Σ, of V is a set of vectors of V such that for all $a \in \Sigma$:
(1) $\Sigma \cap \mathbf{c a}=\{a,-a\}, \mathbf{c} \in \mathbf{R}$
(2) $s_{a} \Sigma=\Sigma$

Every root system Σ is associated with some reflection group W

Reflection Group - Definition and Example

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$
s_{\alpha}(t)=t-2 \frac{(t, \alpha)}{(\alpha, \alpha)} \alpha
$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A Root System, Σ, of V is a set of vectors of V such that for all $a \in \Sigma$:

Every root system Σ is associated with some reflection group W

Reflection Group - Definition and Example

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$
s_{\alpha}(t)=t-2 \frac{(t, \alpha)}{(\alpha, \alpha)} \alpha
$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A Root System, Σ, of V is a set of vectors of V such that for all $a \in \Sigma$:

Every root system Σ is associated with some reflection group W

Reflection Group - Definition and Example

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$
s_{\alpha}(t)=t-2 \frac{(t, \alpha)}{(\alpha, \alpha)} \alpha
$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A Root System, Σ, of V is a set of vectors of V such that for all $a \in \Sigma$:
(1) $\Sigma \cap \mathbf{c a}=\{a,-a\}, \mathbf{c} \in \mathbf{R}$

Every root system Σ is associated with some reflection group W

Reflection Group - Definition and Example

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$
s_{\alpha}(t)=t-2 \frac{(t, \alpha)}{(\alpha, \alpha)} \alpha
$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A Root System, Σ, of V is a set of vectors of V such that for all $a \in \Sigma$:
(1) $\Sigma \cap \mathbf{c a}=\{a,-a\}, \mathbf{c} \in \mathbf{R}$
(2) $s_{a} \Sigma=\Sigma$

Every root system Σ is associated with some reflection group W

Reflection Group - Definition and Example

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$
s_{\alpha}(t)=t-2 \frac{(t, \alpha)}{(\alpha, \alpha)} \alpha
$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A Root System, Σ, of V is a set of vectors of V such that for all $a \in \Sigma$:
(1) $\Sigma \cap \mathbf{c a}=\{a,-a\}, \mathbf{c} \in \mathbf{R}$
(2) $s_{a} \Sigma=\Sigma$

Every root system Σ is associated with some reflection group W.

Reflection Group - Definition and Example

Definition

Let V be a vector space. Let t, α be vectors in V. We call s_{α} a reflection if

$$
s_{\alpha}(t)=t-2 \frac{(t, \alpha)}{(\alpha, \alpha)} \alpha
$$

Definition

A group that is generated by reflections is called a Reflection Group.

Definition

Let V be a vector space. A Root System, Σ, of V is a set of vectors of V such that for all $a \in \Sigma$:
(1) $\Sigma \cap \mathbf{c a}=\{a,-a\}, \mathbf{c} \in \mathbf{R}$
(2) $s_{a} \Sigma=\Sigma$

Every root system Σ is associated with some reflection group W.

Positive, Negative, and Simple Systems

Definition

Let V be an vector space. Let $\Sigma=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a Root System of V. Let $\Delta=\left\{\beta_{1}, \ldots, \beta_{k}\right\}, k \leq n . \Delta$ is a Simple System of ϕ if it is a vector space basis of V and for all $\alpha_{j} \in \Sigma$

where, for each $j, a_{i}>0$ or $a_{i}<0$ for all i.
Those α_{j} for which all $a_{i}>0$ are called Positive Roots. The set of these roots is called a Positive System. Those α_{j} for which all $a_{i}<0$ are called Negative Roots. The set of these roots is called a Negative System.

The reflections associated with simple roots are called Simple Reflections.

Positive, Negative, and Simple Systems

Definition

Let V be an vector space. Let $\Sigma=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a Root System of V. Let $\Delta=\left\{\beta_{1}, \ldots, \beta_{k}\right\}, k \leq n . \Delta$ is a Simple System of ϕ if it is a vector space basis of V and for all $\alpha_{j} \in \Sigma$

$$
\text { where, for each } j, a_{i}>0 \text { or } a_{i}<0 \text { for all } i .
$$

Those α_{j} for which all $a_{i}>0$ are called Positive Roots. The set of these roots is called a Positive System. Those α_{j} for which all $a_{i}<0$ are called Negative Roots. The set of these roots is called a Negative System.

The reflections associated with simple roots are called Simple Reflections.

Positive, Negative, and Simple Systems

Definition

Let V be an vector space. Let $\Sigma=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a Root System of V. Let $\Delta=\left\{\beta_{1}, \ldots, \beta_{k}\right\}, k \leq n . \Delta$ is a Simple System of Φ if it is a vector space basis of V and for all $\alpha_{j} \in \Sigma$

$$
\alpha_{j}=\sum_{i=1}^{k} a_{i} \beta_{i}
$$

where, for each $j, a_{i}>0$ or $a_{i}<0$ for all i.
Those α_{j} for which all $a_{i}>0$ are called Positive Roots. The set of these roots is called a Positive System. Those α_{j} for which all $a_{i}<0$ are called Negative Roots. The set of these roots is called a Negative System.

The reflections associated with simple roots are called Simple Reflections

Positive, Negative, and Simple Systems

Definition

Let V be an vector space. Let $\Sigma=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a Root System of V. Let $\Delta=\left\{\beta_{1}, \ldots, \beta_{k}\right\}, k \leq n . \Delta$ is a Simple System of Φ if it is a vector space basis of V and for all $\alpha_{j} \in \Sigma$

$$
\alpha_{j}=\sum_{i=1}^{k} a_{i} \beta_{i}
$$

where, for each $j, a_{i}>0$ or $a_{i}<0$ for all i.

Those α_{j} for which all $a_{i}>0$ are called Positive Roots. The set of these roots is called a Positive System. Negative Roots. The set of these roots is called a Negative System.

The reflections associated with simple roots are called Simple Reflections

Positive, Negative, and Simple Systems

Definition

Let V be an vector space. Let $\Sigma=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a Root System of V. Let $\Delta=\left\{\beta_{1}, \ldots, \beta_{k}\right\}, k \leq n . \Delta$ is a Simple System of Φ if it is a vector space basis of V and for all $\alpha_{j} \in \Sigma$

$$
\alpha_{j}=\sum_{i=1}^{k} a_{i} \beta_{i}
$$

where, for each $j, a_{i}>0$ or $a_{i}<0$ for all i.
Those α_{j} for which all $a_{i}>0$ are called Positive Roots. The set of these roots is called a Positive System. Those α_{j} for which all $a_{i}<0$ are called Negative Roots. The set of these roots is called a Negative System.

The reflections associated with simple roots are called Simple Reflections

Positive, Negative, and Simple Systems

Definition

Let V be an vector space. Let $\Sigma=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a Root System of V. Let $\Delta=\left\{\beta_{1}, \ldots, \beta_{k}\right\}, k \leq n . \Delta$ is a Simple System of Φ if it is a vector space basis of V and for all $\alpha_{j} \in \Sigma$

$$
\alpha_{j}=\sum_{i=1}^{k} a_{i} \beta_{i}
$$

where, for each $j, a_{i}>0$ or $a_{i}<0$ for all i.
Those α_{j} for which all $a_{i}>0$ are called Positive Roots. The set of these roots is called a Positive System. Those α_{j} for which all $a_{i}<0$ are called Negative Roots. The set of these roots is called a Negative System.

The reflections associated with simple roots are called Simple Reflections.

Coxeter Group

Theorem

Let Σ be a root system in V, and let Δ be a simple system of Σ. Let W be the reflection group associated to Σ. Then W is generated by simple reflections in the following way:

$$
W=\left\langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta \mid\left(s_{\alpha} s_{\beta}\right)^{m_{\alpha, \beta}}=1\right\rangle
$$

where $m_{\alpha, \beta}$ is the order of $s_{\alpha} s_{\beta}$ in W.

Example

Suppose $\Sigma=\{ \pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta=\left\{s_{(1,0)}, s_{(-1,1)}\right\}$. Let $1=(1,0), 2=(-1,1)$. Then from our Coxeter Relations: $W=\left\{1, s_{1}, s_{2}, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\right\}$

Coxeter Group

Theorem

Let Σ be a root system in V, and let Δ be a simple system of Σ. Let W be the reflection group associated to Σ. Then W is generated by simple reflections in the following way:

$$
W=\left\langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta \mid\left(s_{\alpha} s_{\beta}\right)^{m_{\alpha, \beta}}=1\right\rangle
$$

where $m_{\alpha, \beta}$ is the order of $s_{\alpha} s_{\beta}$ in W.

Example

 of Σ is $\Delta=\left\{s_{(1,0)}, s_{(-1,1)}\right\}$. Let $1=(1,0), 2=(-1,1)$. Then from our Coxeter Relations: $W=\left\{1, s_{1}, s_{2}, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\right\}$

Coxeter Group

Theorem

Let Σ be a root system in V, and let Δ be a simple system of Σ. Let W be the reflection group associated to Σ. Then W is generated by simple reflections in the following way:

$$
W=\left\langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta \mid\left(s_{\alpha} s_{\beta}\right)^{m_{\alpha, \beta}}=1\right\rangle
$$

where $m_{\alpha, \beta}$ is the order of $s_{\alpha} s_{\beta}$ in W.

Example
 Suppose $\Sigma=\{ \pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta=\left\{s_{(1,0)}, s_{(-1,1)}\right\}$. Let $1=(1,0), 2=(-1,1)$. Then from our Coxeter Relations: $W=\left\{1, s_{1}, s_{2}, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\right\}$

Coxeter Group

Theorem

Let Σ be a root system in V, and let Δ be a simple system of Σ. Let W be the reflection group associated to Σ. Then W is generated by simple reflections in the following way:

$$
W=\left\langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta \mid\left(s_{\alpha} s_{\beta}\right)^{m_{\alpha, \beta}}=1\right\rangle
$$

where $m_{\alpha, \beta}$ is the order of $s_{\alpha} s_{\beta}$ in W.

Example

Suppose $\Sigma=\{ \pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$.
of Σ is $\Delta=\left\{s_{(1,0)}, s_{(-1,1)}\right\}$. Let $1=(1,0), 2=(-1,1)$. Then from our Coxeter Relations: $W=\left\{1, s_{1}, s_{2}, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\right\}$

Coxeter Group

Theorem

Let Σ be a root system in V, and let Δ be a simple system of Σ. Let W be the reflection group associated to Σ. Then W is generated by simple reflections in the following way:

$$
W=\left\langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta \mid\left(s_{\alpha} s_{\beta}\right)^{m_{\alpha, \beta}}=1\right\rangle
$$

where $m_{\alpha, \beta}$ is the order of $s_{\alpha} s_{\beta}$ in W.

Example

Suppose $\Sigma=\{ \pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta=\left\{s_{(1,0)}, s_{(-1,1)}\right\}$.

Coxeter Group

Theorem

Let Σ be a root system in V, and let Δ be a simple system of Σ. Let W be the reflection group associated to Σ. Then W is generated by simple reflections in the following way:

$$
W=\left\langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta \mid\left(s_{\alpha} s_{\beta}\right)^{m_{\alpha, \beta}}=1\right\rangle
$$

where $m_{\alpha, \beta}$ is the order of $s_{\alpha} s_{\beta}$ in W.

Example

Suppose $\Sigma=\{ \pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta=\left\{s_{(1,0)}, s_{(-1,1)}\right\}$. Let $1=(1,0), 2=(-1,1)$.

Coxeter Group

Theorem

Let Σ be a root system in V, and let Δ be a simple system of Σ. Let W be the reflection group associated to Σ. Then W is generated by simple reflections in the following way:

$$
W=\left\langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta \mid\left(s_{\alpha} s_{\beta}\right)^{m_{\alpha, \beta}}=1\right\rangle
$$

where $m_{\alpha, \beta}$ is the order of $s_{\alpha} s_{\beta}$ in W.

Example

Suppose $\Sigma=\{ \pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta=\left\{s_{(1,0)}, s_{(-1,1)}\right\}$. Let $1=(1,0), 2=(-1,1)$. Then from our Coxeter Relations: $W=\left\{1, s_{1}, s_{2}, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\right\}$

Coxeter Group

Theorem

Let Σ be a root system in V, and let Δ be a simple system of Σ. Let W be the reflection group associated to Σ. Then W is generated by simple reflections in the following way:

$$
W=\left\langle s_{\alpha}, s_{\beta}, \alpha, \beta \in \Delta \mid\left(s_{\alpha} s_{\beta}\right)^{m_{\alpha, \beta}}=1\right\rangle
$$

where $m_{\alpha, \beta}$ is the order of $s_{\alpha} s_{\beta}$ in W.

Example

Suppose $\Sigma=\{ \pm(1,0), \pm(1,1), \pm(0,1), \pm(-1,1)\}$. Then a simple system of Σ is $\Delta=\left\{s_{(1,0)}, s_{(-1,1)}\right\}$. Let $1=(1,0), 2=(-1,1)$. Then from our Coxeter Relations: $W=\left\{1, s_{1}, s_{2}, s_{12}, s_{21}, s_{121}, s_{212}, s_{1212}\right\}$

Formal Group Law

Definition

Let R be a commutative ring.
Let $F(x, y)=x+y+\sum_{i, j} a_{i j} x^{i} y^{j}, a_{i j} \in R$, be a formal power series in variables x and y.
(F, R) is a Formal Group Law (FGL) if

$$
\begin{aligned}
& \text { 1. } F(x, 0)=F(0, x) \\
& \text { 2. } F(x, y)=F(y, x)
\end{aligned}
$$

$$
\text { 3. } F(F(x, y), z)=F(x, F(y, z))
$$

Notation: $F(x, y)=x+F y$

Every FGL has a "formal inverse" denoted $-_{F} X$ with the property $x+F(-F X)=0$

Formal Group Law

Definition

Let R be a commutative ring.
Let $F(x, y)=x+y+\sum_{i, j} a_{i j} x^{i} y^{j}, a_{i j} \in R$, be a formal power series in variables x and y.
(F, R) is a Formal Group Law (FGL) if

$$
\text { 1. } F(x, 0)=F(0, x)
$$

$$
\text { 2. } F(x, y)=F(y, x)
$$

```
3. }F(F(x,y),z)=F(x,F(y,z)
```

Notation: $F(x, y)=x+F y$
Every FGL has a "formal inverse" denoted $-_{F X}$ with the property $X+F\left(-F^{X}\right)=0$

Formal Group Law

Definition

Let R be a commutative ring.
Let $F(x, y)=x+y+\sum_{i, j} a_{i j} x^{i} y^{j}, a_{i j} \in R$, be a formal power series in variables x and y.
(F, R) is a Formal Group Law (FGL) if

$$
\begin{aligned}
& \text { 1. } F(x, 0)=F(0, x) \\
& \text { 2. } F(x, y)=F(y, x)
\end{aligned}
$$

Notation: $F(x, y)=x+F y$
Every FGL has a "formal inverse" denoted $-F^{X}$ with the property

Formal Group Law

Definition

Let R be a commutative ring.
Let $F(x, y)=x+y+\sum_{i, j} a_{i j} x^{i} y^{j}, a_{i j} \in R$, be a formal power series in variables x and y.
(F, R) is a Formal Group Law (FGL) if

$$
\begin{aligned}
& \text { 1. } F(x, 0)=F(0, x) \\
& \text { 2. } F(x, y)=F(y, x)
\end{aligned}
$$

$$
\text { 3. } F(F(x, y), z)=F(x, F(y, z))
$$

Notation: $F(x, y)=x+F y$
Every FGL has a "formal inverse" denoted $-_{F X}$ with the property

Formal Group Law

Definition

Let R be a commutative ring.
Let $F(x, y)=x+y+\sum_{i, j} a_{i j} x^{i} y^{j}, a_{i j} \in R$, be a formal power series in variables x and y.
(F, R) is a Formal Group Law (FGL) if

$$
\begin{aligned}
& \text { 1. } F(x, 0)=F(0, x) \\
& \text { 2. } F(x, y)=F(y, x)
\end{aligned}
$$

$$
\text { 3. } F(F(x, y), z)=F(x, F(y, z))
$$

Notation: $F(x, y)=x+F y$
Every FGL has a "formal inverse" denoted $-_{F X}$ with the property

Formal Group Law

Definition

Let R be a commutative ring.
Let $F(x, y)=x+y+\sum_{i, j} a_{i j} x^{i} y^{j}, a_{i j} \in R$, be a formal power series in variables x and y.
(F, R) is a Formal Group Law (FGL) if

$$
\begin{aligned}
& \text { 1. } F(x, 0)=F(0, x) \\
& \text { 2. } F(x, y)=F(y, x)
\end{aligned}
$$

$$
\text { 3. } F(F(x, y), z)=F(x, F(y, z))
$$

Notation: $F(x, y)=x+F y$

Every FGL has a "formal inverse" denoted $-_{F X}$ with the property

Formal Group Law

Definition

Let R be a commutative ring.
Let $F(x, y)=x+y+\sum_{i, j} a_{i j} x^{i} y^{j}, a_{i j} \in R$, be a formal power series in variables x and y.
(F, R) is a Formal Group Law (FGL) if

$$
\begin{aligned}
\text { 1. } F(x, 0) & =F(0, x) \\
\text { 2. } F(x, y) & =F(y, x) \\
\text { 3. } F(F(x, y), z) & =F(x, F(y, z))
\end{aligned}
$$

Notation: $F(x, y)=x+F y$
Every FGL has a "formal inverse" denoted $-_{F X}$ with the property

$$
x+F(-F X)=0 .
$$

Examples

Example

Let F be the additive FGL. Then

$$
F(x, y)=x+y
$$

$$
\text { Here, }- \text { FX }=-x
$$

Example
 Let (F, R) be the multiplicative $F G L$, and let $\beta \in R, \beta \neq 0$. Then
 $$
F(x, y)=x+y-\beta x y
$$

Examples

Example

Let F be the additive FGL. Then

$$
F(x, y)=x+y
$$

Here, $-r_{x}=-x$

Example

Let (F, R) be the multiplicative $F G L$, and let $\beta \in R, \beta \neq 0$. Then

$$
F(x, y)=x+y-\beta x y
$$

Examples

Example

Let F be the additive FGL . Then

$$
F(x, y)=x+y
$$

$$
\text { Here, }-F^{x}=-x
$$

Example

Let (F, R) be the multiplicative FGL , and let $\beta \in R, \beta \neq 0$. Then

$$
F(x, y)=x+y-\beta x y
$$

Examples

Example

Let F be the additive FGL. Then

$$
F(x, y)=x+y
$$

$$
\text { Here, }-F^{x}=-x
$$

Example

Let (F, R) be the multiplicative FGL , and let $\beta \in R, \beta \neq 0$. Then

$$
F(x, y)=x+y-\beta x y
$$

Here, $-{ }^{\prime} x=\frac{x}{\beta x-1}=-x\left(1+\beta x+(\beta x)^{2}+\ldots\right)=-x-(\beta x)^{2}-(\beta x)^{3}-\ldots$

Examples

Example

Let (F, R) be the Lorentz FGL, and let $\beta \in R, \beta \neq 0$. Then

$$
F(x, y)=\frac{x+y}{1+\beta x y}=(x+y)\left(1+(-\beta x y)+(-\beta x y)^{2}+\ldots\right)
$$

Here, $-F x=-x$

Example

Let (F, \mathbb{L}) be the universal FGL. Then

where the variables $a_{i j}$ are resticted by the associativity and commutativity of the FGL. They lie in the Lazard ring \mathbb{L}.

Examples

Example

Let (F, R) be the Lorentz FGL, and let $\beta \in R, \beta \neq 0$. Then

$$
F(x, y)=\frac{x+y}{1+\beta x y}=(x+y)\left(1+(-\beta x y)+(-\beta x y)^{2}+\ldots\right)
$$

Here, $-r^{x}=-x$

Example

Let (F, \mathbb{L}) be the universal $F G L$. Then

where the variables $a_{i j}$ are resticted by the associativity and commutativity of the FGL. They lie in the Lazard ring \mathbb{L}.

Examples

Example

Let (F, R) be the Lorentz FGL, and let $\beta \in R, \beta \neq 0$. Then

$$
F(x, y)=\frac{x+y}{1+\beta x y}=(x+y)\left(1+(-\beta x y)+(-\beta x y)^{2}+\ldots\right)
$$

Here, - F $^{x}=-x$

Example

Let (F, \mathbb{L}) be the universal $F G L$. Then

$$
F(x, y)=x+y+\sum_{i, j} a_{i j} x^{i} y^{j}
$$

where the variables $a_{i j}$ are resticted by the associativity and commutativity of the FGL. They lie in the Lazard ring \mathbb{L}.

Formal Group Algebra

Let (F, R) be an FGL, and suppose Λ is a finite abelian group. Let $R\left[\left[x_{\lambda}\right]\right]=R\left[\left[\left\{x_{\lambda} \mid \lambda \in \Lambda\right\}\right]\right]$ be a formal power series over R in variables x_{λ} indexed by $\lambda \in \Lambda$.

Let J_{F} be the smallest ideal generated by the elements

Definition

The auotient is called the Formal Group Ring/Algebra of Λ with respect to (F, R)

$$
R[[\Lambda]]_{F}=R\left[\left[x_{\lambda}\right]\right] / J_{F}
$$

Formal Group Algebra

Let (F, R) be an FGL, and suppose Λ is a finite abelian group. Let $R\left[\left[x_{\lambda}\right]\right]=R\left[\left[\left\{x_{\lambda} \mid \lambda \in \Lambda\right\}\right]\right]$ be a formal power series over R in variables x_{λ} indexed by $\lambda \in \Lambda$.

Let J_{F} be the smallest ideal generated by the elements

$$
x_{0} \text { and } x_{\lambda_{1}}+F x_{\lambda_{2}}-x_{\lambda_{1}+\lambda_{2}}
$$

Definition

The auotient is called the Formal Group Ring/Algebra of Λ with respect to (F, R)

$$
R[[\Lambda]]_{F}=R\left[\left[x_{\lambda}\right]\right] / J_{F}
$$

Formal Group Algebra

Let (F, R) be an FGL, and suppose Λ is a finite abelian group. Let $R\left[\left[x_{\lambda}\right]\right]=R\left[\left[\left\{x_{\lambda} \mid \lambda \in \Lambda\right\}\right]\right]$ be a formal power series over R in variables x_{λ} indexed by $\lambda \in \Lambda$.

Let J_{F} be the smallest ideal generated by the elements

$$
x_{0} \text { and } x_{\lambda_{1}}+F x_{\lambda_{2}}-x_{\lambda_{1}+\lambda_{2}}
$$

Definition

The quotient is called the Formal Group Ring/Algebra of Λ with respect to (F, R) :

$$
R[[\Lambda]]_{F}=R\left[\left[x_{\lambda}\right]\right] / J_{F}
$$

Twisted Formal Group Algebra

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_{F}=Q^{(R, F)}$ the field of fractions generated by $R[[\wedge]]_{F}$ and $\left\{x_{\lambda}^{-1} \mid \lambda \in \Lambda \backslash\{0\}\right\}$. W acts on a polynomial $f\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right) \in Q_{F}$ in the following way:

$$
w\left(f\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right)\right)=f\left(x_{w\left(\alpha_{1}\right)}, \ldots, x_{w\left(\alpha_{n}\right)}\right)
$$

Definition

The left R-module $Q_{W}:=Q_{F} \otimes_{R} R[W]$ is the Twisted Formal Group Algebra, with multiplication given by

$$
\left(q_{1} \delta_{w_{1}}\right)\left(q_{2} \delta_{w_{2}}\right)=\left(q_{1} w_{1}\left(q_{2}\right)\right)\left(\delta_{w_{1}} \delta_{w_{2}}\right)
$$

Here, $q_{i} \in Q_{F}$ and $\delta_{w_{i}}$ denotes an element of Q_{W} : it is not the same as the reflection w_{i}.

Twisted Formal Group Algebra

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_{F}=Q^{(R, F)}$ the field of fractions generated by $R[[\Lambda]]_{F}$ and $\left\{x_{\lambda}^{-1} \mid \lambda \in \Lambda \backslash\{0\}\right\}$.
following way
$w\left(f\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right)\right)=f\left(x_{w\left(\alpha_{1}\right)}, \ldots, x_{w\left(\alpha_{n}\right)}\right)$

Definition

The left R-module $Q_{W}:=Q_{F} \otimes_{R} R[W]$ is the Twisted Formal Group Algebra, with multiplication given by

$$
\left(q_{1} \delta_{w_{1}}\right)\left(q_{2} \delta_{w_{2}}\right)=\left(q_{1} w_{1}\left(q_{2}\right)\right)\left(\delta_{w_{1}} \delta_{w_{2}}\right)
$$

Here, $q_{i} \in Q_{F}$ and $\delta_{w_{i}}$ denotes an element of Q_{W} : it is not the same as the reflection w_{i}.

Twisted Formal Group Algebra

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_{F}=Q^{(R, F)}$ the field of fractions generated by $R[[\Lambda]]_{F}$ and $\left\{x_{\lambda}^{-1} \mid \lambda \in \Lambda \backslash\{0\}\right\}$. W acts on a polynomial $f\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right) \in Q_{F}$ in the following way:

$$
w\left(f\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right)\right)=f\left(x_{w\left(\alpha_{1}\right)}, \ldots, x_{w\left(\alpha_{n}\right)}\right)
$$

Definition
The left R-module $Q_{W}:=Q_{F} \otimes_{R} R[W]$ is the Twisted Formal Group Algebra, with multiplication given by

$$
\left(q_{1} \delta_{w_{1}}\right)\left(q_{2} \delta_{w_{2}}\right)=\left(q_{1} w_{1}\left(q_{2}\right)\right)\left(\delta_{w_{1}} \delta_{w_{2}}\right)
$$

Here, $q_{i} \in Q_{F}$ and $\delta_{w_{i}}$ denotes an element of Q_{W} : it is not the same as the reflection w_{i}.

Twisted Formal Group Algebra

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_{F}=Q^{(R, F)}$ the field of fractions generated by $R[[\Lambda]]_{F}$ and $\left\{x_{\lambda}^{-1} \mid \lambda \in \Lambda \backslash\{0\}\right\}$. W acts on a polynomial $f\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right) \in Q_{F}$ in the following way:

$$
w\left(f\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right)\right)=f\left(x_{w\left(\alpha_{1}\right)}, \ldots, x_{w\left(\alpha_{n}\right)}\right)
$$

Definition

The left R-module $Q_{W}:=Q_{F} \otimes_{R} R[W]$ is the Twisted Formal Group Algebra, with multiplication given by

$$
\left(q_{1} \delta_{w_{1}}\right)\left(q_{2} \delta_{w_{2}}\right)=\left(q_{1} w_{1}\left(q_{2}\right)\right)\left(\delta_{w_{1}} \delta_{w_{2}}\right)
$$

Here, $q_{i} \in Q_{F}$ and $\delta_{w_{i}}$ denotes an element of Q_{w} : it is not the same as

Twisted Formal Group Algebra

Let Σ be a finite root system associated with reflection group W. Let Λ be a certain abelian group such that $\Sigma \subset \Lambda$.

Denote by $Q_{F}=Q^{(R, F)}$ the field of fractions generated by $R[[\Lambda]]_{F}$ and $\left\{x_{\lambda}^{-1} \mid \lambda \in \Lambda \backslash\{0\}\right\}$. W acts on a polynomial $f\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right) \in Q_{F}$ in the following way:

$$
w\left(f\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{n}}\right)\right)=f\left(x_{w\left(\alpha_{1}\right)}, \ldots, x_{w\left(\alpha_{n}\right)}\right)
$$

Definition

The left R-module $Q_{W}:=Q_{F} \otimes_{R} R[W]$ is the Twisted Formal Group Algebra, with multiplication given by

$$
\left(q_{1} \delta_{w_{1}}\right)\left(q_{2} \delta_{w_{2}}\right)=\left(q_{1} w_{1}\left(q_{2}\right)\right)\left(\delta_{w_{1}} \delta_{w_{2}}\right)
$$

Here, $q_{i} \in Q_{F}$ and $\delta_{w_{i}}$ denotes an element of Q_{W} : it is not the same as the reflection w_{i}.

Formal Demazure Algebra

Definition

Let $\alpha \in \Sigma$. The Formal Demazure Element of α with respect to the FGL, (F, R), is defined as

$$
X_{\alpha}^{F}=\frac{1}{x_{\alpha}}\left(1-\delta_{s_{\alpha}}\right)
$$

Definition

The Formal Demazure Algebra, D_{W}^{F}, is the R-subalgebra of Q_{W} generated by the elements X_{α}

The Formal Affine Demazure Algebra, $\mathbf{D}_{\mathrm{W}}^{\mathrm{F}}$, is the R-subalgebra of Q_{W} generated by $R[[\Lambda]]$ and the elements X_{α}

Formal Demazure Algebra

Definition

Let $\alpha \in \Sigma$. The Formal Demazure Element of α with respect to the FGL, (F, R), is defined as

$$
X_{\alpha}^{F}=\frac{1}{x_{\alpha}}\left(1-\delta_{s_{\alpha}}\right)
$$

Definition

The Formal Demazure Algebra, D_{W}^{F}, is the R-subalgebra of Q_{W} generated by the elements X_{α}.

Formal Demazure Algebra

Definition

Let $\alpha \in \Sigma$. The Formal Demazure Element of α with respect to the FGL, (F, R), is defined as

$$
X_{\alpha}^{F}=\frac{1}{x_{\alpha}}\left(1-\delta_{s_{\alpha}}\right)
$$

Definition

The Formal Demazure Algebra, D_{W}^{F}, is the R-subalgebra of Q_{W} generated by the elements X_{α}.

The Formal Affine Demazure Algebra, $\mathbf{D}_{\mathbf{W}}^{\mathbf{F}}$, is the R-subalgebra of Q_{W} generated by $R[[\Lambda]]$ and the elements X_{α}

Question

Question: How can we describe D_{W}^{F} when $W=I_{2}(5)$ is the dihedral group of order 5 , and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_{2}(5)$. Fix FGL (F, R).
Notations/Assumptions:

- For $\lambda \in \sum, \lambda= \pm \alpha_{i}$ for some $i=1, \ldots, 5$
- Denote by $x_{-\alpha_{i}}, i=1, \ldots, 5$, the formal inverse of $x_{\alpha_{i}}$ under (F, R)
- Denote by α_{1} and α_{2} our simple roots of Σ
- Set $X_{\alpha_{i}}=X_{i}$ for $i=1, \ldots, 5$

The following slide shows the positions and labelling of the roots that will be used from now on.

Question

Question: How can we describe D_{W}^{F} when $W=I_{2}(5)$ is the dihedral group of order 5 , and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_{2}(5)$. Fix $\mathrm{FGL}(F, R)$.

Notations/Assumptions:

- For $\lambda \in \sum, \lambda= \pm \alpha_{i}$ for some $i=1, \ldots, 5$
- Denote by $x_{-\alpha_{i}}, i=1, \ldots, 5$, the formal inverse of $x_{\alpha_{i}}$ under (F, R)
- Denote by α_{1} and α_{2} our simple roots of Σ
- Set $X_{\alpha_{i}}=X_{i}$ for $i=1, \ldots, 5$

The following slide shows the positions and labelling of the roots that will be used from now on.

Question

Question: How can we describe D_{W}^{F} when $W=I_{2}(5)$ is the dihedral group of order 5 , and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_{2}(5)$. Fix $\mathrm{FGL}(F, R)$.
Notations/Assumptions:

- For $\lambda \in \Sigma, \lambda= \pm \alpha_{i}$ for some $i=1, \ldots, 5$
- Denote by $x_{-\alpha_{i}}, i=1, \ldots, 5$, the formal inverse of $x_{\alpha_{i}}$ under (F, R)
- Denote by α_{1} and α_{2} our simple roots of Σ
- Set $X_{\alpha_{i}}=X_{i}$ for $i=1, \ldots, 5$

The following slide shows the positions and labelling of the roots that will be used from now on.

Question

Question: How can we describe D_{W}^{F} when $W=I_{2}(5)$ is the dihedral group of order 5 , and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_{2}(5)$. Fix $\mathrm{FGL}(F, R)$.
Notations/Assumptions:

- For $\lambda \in \Sigma, \lambda= \pm \alpha_{i}$ for some $i=1, \ldots, 5$
- Denote by $x_{-\alpha_{i}}, i=1, \ldots, 5$, the formal inverse of $x_{\alpha_{i}}$ under (F, R)
- Denote by α_{1} and α_{2} our simple roots of Σ
- Set $X_{\alpha_{i}}=X_{i}$ for $i=1, \ldots, 5$

The following slide shows the positions and labelling of the roots that will be used from now on.

Question

Question: How can we describe D_{W}^{F} when $W=I_{2}(5)$ is the dihedral group of order 5 , and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_{2}(5)$. Fix $\mathrm{FGL}(F, R)$.
Notations/Assumptions:

- For $\lambda \in \Sigma, \lambda= \pm \alpha_{i}$ for some $i=1, \ldots, 5$
- Denote by $x_{-\alpha_{i}}, i=1, \ldots, 5$, the formal inverse of $x_{\alpha_{i}}$ under (F, R)
- Denote by α_{1} and α_{2} our simple roots of Σ

Question

Question: How can we describe D_{W}^{F} when $W=I_{2}(5)$ is the dihedral group of order 5 , and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_{2}(5)$. Fix $\mathrm{FGL}(F, R)$.
Notations/Assumptions:

- For $\lambda \in \Sigma, \lambda= \pm \alpha_{i}$ for some $i=1, \ldots, 5$
- Denote by $x_{-\alpha_{i}}, i=1, \ldots, 5$, the formal inverse of $x_{\alpha_{i}}$ under (F, R)
- Denote by α_{1} and α_{2} our simple roots of Σ
- Set $X_{\alpha_{i}}=X_{i}$ for $i=1, \ldots, 5$

The following slide shows the positions and labelling of the roots that will be used from now on.

Question

Question: How can we describe D_{W}^{F} when $W=I_{2}(5)$ is the dihedral group of order 5 , and F is an arbitrary FGL?

Let Σ be the root system corresponding to $I_{2}(5)$. Fix $\mathrm{FGL}(F, R)$.
Notations/Assumptions:

- For $\lambda \in \Sigma, \lambda= \pm \alpha_{i}$ for some $i=1, \ldots, 5$
- Denote by $x_{-\alpha_{i}}, i=1, \ldots, 5$, the formal inverse of $x_{\alpha_{i}}$ under (F, R)
- Denote by α_{1} and α_{2} our simple roots of Σ
- Set $X_{\alpha_{i}}=X_{i}$ for $i=1, \ldots, 5$

The following slide shows the positions and labelling of the roots that will be used from now on.

Notation: Let $s_{\alpha_{i}}=s_{i}$ and $\alpha_{i}=i$. The following table represents the permuatation of roots obtained after applying a reflection of $I_{2}(5)$ to the roots of Σ

1	1	-1	2	-2	3	-3	4	-4	5	-5
s_{1}	-1	1	-4	4	-5	5	-2	2	-3	3
s_{2}	-5	5	-2	2	-4	4	-3	3	-1	1
s_{12}	3	-3	4	-4	2	-2	5	-5	1	-1
s_{21}	5	-5	3	-3	1	-1	2	-2	4	-4
s_{121}	-3	3	-5	5	-1	1	-4	4	-2	2
s_{212}	-4	4	-3	3	-2	2	-1	1	-5	5
s_{1212}	2	-2	5	-5	4	-4	1	-1	3	-3
s_{2121}	4	-4	1	-1	5	-5	3	-3	2	-2
s_{12121}	-2	2	-1	1	-3	3	-5	5	-4	4

Notation: Let $s_{\alpha_{i}}=s_{i}$ and $\alpha_{i}=i$. The following table represents the permuatation of roots obtained after applying a reflection of $I_{2}(5)$ to the roots of Σ

1	1	-1	2	-2	3	-3	4	-4	5	-5
s_{1}	-1	1	-4	4	-5	5	-2	2	-3	3
s_{2}	-5	5	-2	2	-4	4	-3	3	-1	1
s_{12}	3	-3	4	-4	2	-2	5	-5	1	-1
s_{21}	5	-5	3	-3	1	-1	2	-2	4	-4
s_{121}	-3	3	-5	5	-1	1	-4	4	-2	2
s_{212}	-4	4	-3	3	-2	2	-1	1	-5	5
s_{1212}	2	-2	5	-5	4	-4	1	-1	3	-3
s_{2121}	4	-4	1	-1	5	-5	3	-3	2	-2
s_{12121}	-2	2	-1	1	-3	3	-5	5	-4	4

Generating $D_{l_{2}(5)}^{F}$

Theorem

Set $s_{j} s_{k}=s_{j k}$. Let $I_{2}(m)=l_{2}(5)$. Then

where $k_{-\alpha_{2}}^{i}$ is obtained from $k_{\alpha_{2}}^{i}$ by applying the map $x_{ \pm i} \mapsto x_{\mp i}$, and

Generating $D_{l_{2}(5)}^{F}$

Theorem

Set $s_{j} s_{k}=s_{j k}$. Let $I_{2}(m)=I_{2}(5)$. Then

$$
\begin{gathered}
X_{21212}-X_{12121}=\left(k_{\alpha_{2}}^{3} X_{212}+s_{12121}\left(k_{-\alpha_{2}}^{3}\right) X_{121}\right)+\left(k_{\alpha_{2}}^{2} X_{12}+\right. \\
\left.\left.s_{12121}\left(k_{-\alpha_{2}}^{2}\right) X_{21}\right)+\left(k_{\alpha_{2}}^{1}\right) X_{2}+s_{12121}\left(k_{-\alpha_{2}}^{1}\right) X_{1}\right)
\end{gathered}
$$

where $k_{-\alpha_{2}}^{i}$ is obtained from $k_{\alpha_{2}}^{i}$ by applying the map $x_{ \pm i} \mapsto x_{\mp i}$, and

$$
\begin{aligned}
& k_{\alpha_{2}}^{3}=\frac{1}{x_{\alpha_{1} x_{\alpha_{2}} x_{\alpha_{3}} x_{\left(-\alpha_{5}\right)}}}-\frac{1}{x_{\alpha_{1} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}}}}-\frac{1}{x_{\left(-\alpha_{2}\right)^{x}\left(-\alpha_{3}\right)^{x}\left(-\alpha_{4}\right)^{x}\left(-\alpha_{5}\right)}}+ \\
& \frac{1}{x_{\alpha_{1}} x_{(}\left(-\alpha_{2}\right)^{x_{(}}\left(\alpha_{4}\right)^{x_{(}}\left(-\alpha_{5}\right)}-\frac{1}{x_{\alpha_{1}} x_{\alpha_{3}} x_{\left(-\alpha_{4}\right)^{x}\left(-\alpha_{5}\right)}} \\
& k_{\alpha_{2}}^{2}=-\frac{1}{x_{\alpha_{2}} x_{\left(-\alpha_{3}\right)^{x}\left(-\alpha_{4}\right)}}+\frac{1}{x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}}}+\frac{1}{x_{\alpha_{2} x_{(}}\left(\alpha_{1}\right)^{\left.x_{(}-\alpha_{4}\right)}}+\frac{1}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\left(-\alpha_{4}\right)}}- \\
& \frac{1}{x_{\alpha_{2}} x_{\alpha_{3}} x_{\left(-\alpha_{5}\right)}}-\frac{1}{x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}} \\
& k_{\alpha_{2}}^{1}=\frac{1}{x_{\left(-\alpha_{3}\right)^{x}\left(-\alpha_{4}\right)}}+\frac{1}{x_{\left(-\alpha_{2}\right)^{x}\left(-\alpha_{5}\right)}}-\frac{1}{x_{\alpha_{1}} x_{\left(-\alpha_{4}\right)}}+\frac{1}{x_{\alpha_{1} x_{\alpha_{2}}}}+\frac{1}{x_{\alpha_{3}} x_{\alpha_{5}}}
\end{aligned}
$$

Generating $D_{l_{2}(5)}^{F}$ - Proof

To begin the proof, we will write out explicitly the products of X_{1} and X_{2} ending in X_{2}.

$$
\begin{aligned}
& X_{2}=\frac{1}{x_{\alpha_{2}}}\left(1-\delta_{2}\right) \\
& X_{1} X_{2}=\frac{1}{x_{\alpha_{1} x_{\alpha_{2}}}}\left(\mathbf{1}-\delta_{2}\right)+\frac{1}{x_{\alpha_{1}} x_{\left(-\alpha_{4}\right)}}\left(\delta_{12}-\delta_{1}\right) \\
& \begin{array}{l}
X_{2} X_{1} X_{2}=X_{2}\left(X_{1} X_{2}\right)= \\
\left(\frac{1}{x_{\alpha_{1}} x_{\alpha_{2}}^{2}}+\frac{1}{x_{\alpha_{2} \times} x_{\left(-\alpha_{2}\right)^{x}\left(-\alpha_{5}\right)}}\right)\left(1-\delta_{2}\right)+\frac{1}{x_{\left.\alpha_{1} x_{\alpha_{2}} x_{(}-\alpha_{4}\right)}}\left(\delta_{12}-\delta_{1}\right)+\frac{1}{x_{\alpha_{2} x_{\alpha_{3}} x_{\left(-\alpha_{5}\right)}}}\left(\delta_{21}-\delta_{212}\right)
\end{array} \\
& X_{2} X_{1} X_{2} X_{1} X_{2}=\left(X_{2} X_{1}\right)\left(X_{2} X_{1} X_{2}\right)= \\
& +\left(\frac{1}{x_{\alpha_{1}}^{2} x_{\alpha_{2}}^{3}}+\frac{1}{\left.x_{\alpha_{1}} x_{\alpha_{2}}^{2} x_{(}-\alpha_{2}\right)^{x}\left(-\alpha_{5}\right)}+\frac{1}{x_{\alpha_{1}} x_{\alpha_{2}}^{2} x_{\left(-\alpha_{1}\right)^{x}\left(-\alpha_{4}\right)}}+\frac{1}{x_{\alpha_{2}} x_{\left(-\alpha_{2}\right)^{2}}^{x_{\left(-\alpha_{5}\right)}^{2}}}+\frac{1}{x_{\left.\alpha_{1} x_{\alpha_{2}}^{2} x_{\left(-\alpha_{2}\right.}\right)^{x}\left(-\alpha_{5}\right)}}+\right. \\
& \left.\frac{1}{x_{\alpha_{2} x_{\alpha_{3}} x_{\alpha_{5}} \times}\left(-\alpha_{2}\right)^{x}\left(-\alpha_{5}\right)}\right)\left(1-\delta_{2}\right)+ \\
& +\left(\frac{1}{x_{\alpha_{1}} x_{\alpha_{2}} x_{(}\left(-\alpha_{1}\right)^{2}{ }_{\left(-\alpha_{4}\right)}^{2}}+\frac{1}{x_{\alpha_{1} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\left(-\alpha_{4}\right)}}}+\frac{1}{x_{\alpha_{1}}^{2} x_{\alpha_{2}}^{2} x_{\left(-\alpha_{4}\right)}}+\frac{1}{x_{\left.\alpha_{1} x_{\alpha_{2}} x_{\left(-\alpha_{2}\right.}\right)^{x}\left(-\alpha_{4}\right)^{x}\left(-\alpha_{5}\right)}}\right)\left(\delta_{12}-\right. \\
& \left.\delta_{1}\right)+ \\
& +\left(\frac{1}{x_{\alpha_{1}} x_{\alpha_{2}}^{2} x_{\alpha_{3}} x_{\left(-\alpha_{5}\right)}}+\frac{1}{x_{\alpha_{2} x_{\alpha_{3}}^{2} x_{5} x_{(}\left(-\alpha_{5}\right)}}+\frac{1}{x_{\left.\alpha_{2} x_{\alpha_{3}} x_{(}-\alpha_{3}\right)^{x}\left(-\alpha_{4}\right)^{x}\left(-\alpha_{5}\right)}}+\frac{1}{\left.x_{\left.\left.\alpha_{2} x_{\alpha_{3}} x_{(}-\alpha_{2}\right)^{x_{(}^{2}} \alpha_{5}\right)}\right)\left(\delta_{21}-\right.}\right. \\
& \left.\delta_{212}\right)+ \\
& +\frac{1}{x_{\alpha_{1} x_{\alpha_{2}} x_{\alpha_{3}} x_{\left(-\alpha_{4}\right)} x_{\left(-\alpha_{5}\right)}}}\left(\delta_{1212}-\delta_{121}+\delta_{2121}-\delta_{21212}\right)
\end{aligned}
$$

Let $f: Q_{l_{2}(5)} \mapsto Q_{l_{2}(5)}$ be a function mapping a polynomial $q\left(\alpha_{1}, \ldots, \alpha_{5},-\alpha_{1}, \ldots,-\alpha_{5}, \delta_{1}, \delta_{2}\right)$ to $q\left(-\alpha_{1}, \ldots,-\alpha_{5}, \alpha_{1}, \ldots, \alpha_{5}, \delta_{2}, \delta_{1}\right)$. $s_{i}\left(q\left(\alpha, \delta_{w}\right)\right)=q\left(s_{i}(\alpha), \delta_{w}\right)$, then one can show, for $i=1,2,3,5$, that

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

Equation 2 follows by applying $s_{12121} \circ f$ to Equation 1:

By subtracting Equation 2 from Equation 1, the result foll pws. . $\bar{\equiv}$,三

Let $f: Q_{l_{2}(5)} \mapsto Q_{l_{2}(5)}$ be a function mapping a polynomial $q\left(\alpha_{1}, \ldots, \alpha_{5},-\alpha_{1}, \ldots,-\alpha_{5}, \delta_{1}, \delta_{2}\right)$ to $q\left(-\alpha_{1}, \ldots,-\alpha_{5}, \alpha_{1}, \ldots, \alpha_{5}, \delta_{2}, \delta_{1}\right)$. If $s_{i}\left(q\left(\alpha, \delta_{w}\right)\right)=q\left(s_{i}(\alpha), \delta_{w}\right)$, then one can show, for $i=1,2,3,5$, that

$$
\underbrace{X_{1} \ldots}_{\text {i elements }}=s_{12121}(f(\underbrace{X_{2} \ldots}_{i \text { elements }}))
$$

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

Equation 2 follows by applying $s_{12121} \circ f$ to Equation 1:

Let $f: Q_{l_{2}(5)} \mapsto Q_{l_{2}(5)}$ be a function mapping a polynomial $q\left(\alpha_{1}, \ldots, \alpha_{5},-\alpha_{1}, \ldots,-\alpha_{5}, \delta_{1}, \delta_{2}\right)$ to $q\left(-\alpha_{1}, \ldots,-\alpha_{5}, \alpha_{1}, \ldots, \alpha_{5}, \delta_{2}, \delta_{1}\right)$. If $s_{i}\left(q\left(\alpha, \delta_{w}\right)\right)=q\left(s_{i}(\alpha), \delta_{w}\right)$, then one can show, for $i=1,2,3,5$, that

$$
\underbrace{X_{1} \ldots}_{\text {i elements }}=s_{12121}(f(\underbrace{X_{2} \ldots}_{i \text { elements }}))
$$

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

$$
\begin{gathered}
X_{2} X_{1} X_{2} X_{1} X_{2}=+k_{\alpha_{2}}^{3}\left(X_{2} X_{1} X_{2}\right)+k_{\alpha_{2}}^{2}\left(X_{1} X_{2}\right)+k_{\alpha_{2}}^{1}\left(X_{2}\right) \\
+\frac{1}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\left(-\alpha_{4}\right)} x_{\left(-\alpha_{5}\right)}}\left(-\delta_{12121}+\delta_{1212}+\delta_{2121}-\delta_{212}-\delta_{121}+\delta_{12}+\delta_{21}-\right. \\
\left.\delta_{1}-\delta_{2}+\mathbf{1}\right)
\end{gathered}
$$

Equation 2 follows by applying s_{12121} of to Equation 1

Let $f: Q_{l_{2}(5)} \mapsto Q_{l_{2}(5)}$ be a function mapping a polynomial $q\left(\alpha_{1}, \ldots, \alpha_{5},-\alpha_{1}, \ldots,-\alpha_{5}, \delta_{1}, \delta_{2}\right)$ to $q\left(-\alpha_{1}, \ldots,-\alpha_{5}, \alpha_{1}, \ldots, \alpha_{5}, \delta_{2}, \delta_{1}\right)$. If $s_{i}\left(q\left(\alpha, \delta_{w}\right)\right)=q\left(s_{i}(\alpha), \delta_{w}\right)$, then one can show, for $i=1,2,3,5$, that

$$
\underbrace{X_{1} \ldots}_{\text {i elements }}=s_{12121}(f(\underbrace{X_{2} \ldots}_{i \text { elements }}))
$$

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

$$
\begin{gathered}
X_{2} X_{1} X_{2} X_{1} X_{2}=+k_{\alpha_{2}}^{3}\left(X_{2} X_{1} X_{2}\right)+k_{\alpha_{2}}^{2}\left(X_{1} X_{2}\right)+k_{\alpha_{2}}^{1}\left(X_{2}\right) \\
+\frac{1}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\left(-\alpha_{4}\right)^{x}\left(-\alpha_{5}\right)}\left(-\delta_{12121}+\delta_{1212}+\delta_{2121}-\delta_{212}-\delta_{121}+\delta_{12}+\delta_{21}-\right.} \\
\left.\delta_{1}-\delta_{2}+\mathbf{1}\right)
\end{gathered}
$$

Equation 2 follows by applying $s_{12121} \circ f$ to Equation 1 :

$$
\begin{gathered}
X_{1} X_{2} X_{1} X_{2} X_{1}=+s_{12121}\left(k_{-\alpha_{2}}^{3}\right)\left(X_{1} X_{2} X_{1}\right)+s_{12121}\left(k_{-\alpha_{2}}^{2}\right)\left(X_{2} X_{1}\right)+ \\
s_{12121}\left(k_{-\alpha_{2}}^{1}\right)\left(X_{1}\right)+\frac{1}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\left(-\alpha_{4}\right)} x_{\left(-\alpha_{5}\right)}}\left(-\delta_{12121}+\delta_{1212}+\delta_{2121}-\delta_{121}+\right. \\
\left.-\delta_{212}+\delta_{21}+\delta_{12}-\delta_{1}-\delta_{2}+\mathbf{1}\right)
\end{gathered}
$$

Let $f: Q_{l_{2}(5)} \mapsto Q_{l_{2}(5)}$ be a function mapping a polynomial $q\left(\alpha_{1}, \ldots, \alpha_{5},-\alpha_{1}, \ldots,-\alpha_{5}, \delta_{1}, \delta_{2}\right)$ to $q\left(-\alpha_{1}, \ldots,-\alpha_{5}, \alpha_{1}, \ldots, \alpha_{5}, \delta_{2}, \delta_{1}\right)$. If $s_{i}\left(q\left(\alpha, \delta_{w}\right)\right)=q\left(s_{i}(\alpha), \delta_{w}\right)$, then one can show, for $i=1,2,3,5$, that

$$
\underbrace{X_{1} \ldots}_{\text {i elements }}=s_{12121}(f(\underbrace{X_{2} \ldots}_{i \text { elements }}))
$$

The strategy of this proof is to show that Equation 1 holds by a "left side equals right side" argument:

$$
\begin{gathered}
X_{2} X_{1} X_{2} X_{1} X_{2}=+k_{\alpha_{2}}^{3}\left(X_{2} X_{1} X_{2}\right)+k_{\alpha_{2}}^{2}\left(X_{1} X_{2}\right)+k_{\alpha_{2}}^{1}\left(X_{2}\right) \\
+\frac{1}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\left(-\alpha_{4}\right)^{x}\left(-\alpha_{5}\right)}\left(-\delta_{12121}+\delta_{1212}+\delta_{2121}-\delta_{212}-\delta_{121}+\delta_{12}+\delta_{21}-\right.} \\
\left.\delta_{1}-\delta_{2}+\mathbf{1}\right)
\end{gathered}
$$

Equation 2 follows by applying $s_{12121} \circ f$ to Equation 1:

$$
\begin{gathered}
X_{1} X_{2} X_{1} X_{2} X_{1}=+s_{12121}\left(k_{-\alpha_{2}}^{3}\right)\left(X_{1} X_{2} X_{1}\right)+s_{12121}\left(k_{-\alpha_{2}}^{2}\right)\left(X_{2} X_{1}\right)+ \\
s_{12121}\left(k_{-\alpha_{2}}^{1}\right)\left(X_{1}\right)+ \\
\frac{1}{x_{\alpha_{1} x_{\alpha_{2}} x_{\alpha_{3}} x_{\left(-\alpha_{4}\right)} x_{\left(-\alpha_{5}\right)}}\left(-\delta_{12121}+\delta_{1212}+\delta_{2121}-\delta_{121}+\right.} \\
\left.-\delta_{212}+\delta_{21}+\delta_{12}-\delta_{1}-\delta_{2}+\mathbf{1}\right)
\end{gathered}
$$

By subtracting Equation 2 from Equation 1, the result follows.

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=-x_{\alpha_{i}}$. Then

Suppose $x_{\alpha_{i}}=\alpha_{i}$ for each $i=1, \ldots, 5$. Then

$X_{1} X_{2} X_{1} X_{2} X_{1}=X_{2} X_{1} X_{2} X_{1} X_{2}$

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=-x_{\alpha_{i}}$. Then
$k_{\alpha_{1}}^{3}=k_{\alpha_{2}}^{3}=\frac{x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}+x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{4}}+x_{\alpha_{1}} x_{\alpha_{3}} x_{\alpha_{4}}}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$

$X_{1} X_{2} X_{1} X_{2} X_{1}=X_{2} X_{1} X_{2} X_{1} X_{2}$

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=-x_{\alpha_{i}}$. Then
$k_{\alpha_{1}}^{3}=k_{\alpha_{2}}^{3}=\frac{x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}+x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{4}}+x_{\alpha_{1}} x_{\alpha_{3}} x_{\alpha_{4}}}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
$k_{\alpha_{1}}^{2}=k_{\alpha_{2}}^{2}=0$
$k_{\alpha_{1}}^{1}=k_{\alpha_{2}}^{1}=-\frac{\left(x_{\alpha_{1}}+x_{\alpha_{2}}+x_{\alpha_{3}}+x_{\alpha_{4}}+x_{\alpha_{5}}\right)}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
Suppose $x_{\alpha_{i}}=\alpha_{i}$ for each $i=1, \ldots, 5$. Then

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=-x_{\alpha_{i}}$. Then
$k_{\alpha_{1}}^{3}=k_{\alpha_{2}}^{3}=\frac{x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}+x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{4}}+x_{\alpha_{1}} x_{\alpha_{3}} x_{\alpha_{4}}}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
$k_{\alpha_{1}}^{2}=k_{\alpha_{2}}^{2}=0$
$k_{\alpha_{1}}^{1}=k_{\alpha_{2}}^{1}=-\frac{\left(x_{\alpha_{1}}+x_{\alpha_{2}}+x_{\alpha_{3}}+x_{\alpha_{4}}+x_{\alpha_{5}}\right)}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
Suppose $x_{\alpha_{i}}=\alpha_{i}$ for each $i=1, \ldots, 5$. Then

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=-x_{\alpha_{i}}$. Then
$k_{\alpha_{1}}^{3}=k_{\alpha_{2}}^{3}=\frac{x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}+x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{4}}+x_{\alpha_{1}} x_{\alpha_{3}} x_{\alpha_{4}}}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
$k_{\alpha_{1}}^{2}=k_{\alpha_{2}}^{2}=0$
$k_{\alpha_{1}}^{1}=k_{\alpha_{2}}^{1}=-\frac{\left(x_{\alpha_{1}}+x_{\alpha_{2}}+x_{\alpha_{3}}+x_{\alpha_{4}}+x_{\alpha_{5}}\right)}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
Suppose $x_{\alpha_{i}}=\alpha_{i}$ for each $i=1, \ldots, 5$. Then

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=-x_{\alpha_{i}}$. Then
$k_{\alpha_{1}}^{3}=k_{\alpha_{2}}^{3}=\frac{x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}+x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{4}}+x_{\alpha_{1}} x_{\alpha_{3}} x_{\alpha_{4}}}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
$k_{\alpha_{1}}^{2}=k_{\alpha_{2}}^{2}=0$
$k_{\alpha_{1}}^{1}=k_{\alpha_{2}}^{1}=-\frac{\left(x_{\alpha_{1}}+x_{\alpha_{2}}+x_{\alpha_{3}}+x_{\alpha_{4}}+x_{\alpha_{5}}\right)}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
Suppose $x_{\alpha_{i}}=\alpha_{i}$ for each $i=1, \ldots, 5$. Then

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=-x_{\alpha_{i}}$. Then
$k_{\alpha_{1}}^{3}=k_{\alpha_{2}}^{3}=\frac{x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}+x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{5}}+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{4}}+x_{\alpha_{1}} x_{\alpha_{3}} x_{\alpha_{4}}}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
$k_{\alpha_{1}}^{2}=k_{\alpha_{2}}^{2}=0$
$k_{\alpha_{1}}^{1}=k_{\alpha_{2}}^{1}=-\frac{\left(x_{\alpha_{1}}+x_{\alpha_{2}}+x_{\alpha_{3}}+x_{\alpha_{4}}+x_{\alpha_{5}}\right)}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}$
Suppose $x_{\alpha_{i}}=\alpha_{i}$ for each $i=1, \ldots, 5$. Then
$k_{\alpha_{1}}^{3}=k_{\alpha_{1}}^{2}=k_{\alpha_{1}}^{1}=0 \quad$ and

$$
X_{1} X_{2} X_{1} X_{2} X_{1}=X_{2} X_{1} X_{2} X_{1} X_{2}
$$

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=\frac{x_{\alpha_{i}}}{A x_{\alpha_{i}}-1}$ for some $0 \neq A \in R$. Then

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=\frac{x_{\alpha_{i}}}{A x_{\alpha_{i}}-1}$ for some $0 \neq A \in R$. Then

$$
\begin{aligned}
& k_{\alpha_{1}}^{3}=k_{\alpha_{2}}^{3}= \\
& \frac{1}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}} \\
& \left.A x_{\alpha_{4}}\right)+x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}\left(1-A x_{\alpha_{2}} x_{\alpha_{5}}\left(1-A x_{\alpha_{3}}\right)+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{4}}\left(1-A x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}\left(1-A x_{\alpha_{1}}\right)+2 A^{2} x_{\alpha_{1}} x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}(1-\right.\right. \\
& \left.x_{4} x_{\alpha_{5}}\right)
\end{aligned}
$$

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=\frac{x_{\alpha_{i}}}{A x_{\alpha_{i}}-1}$ for some $0 \neq A \in R$. Then

$$
\begin{aligned}
& k_{\alpha_{1}}^{3}=k_{\alpha_{2}}^{3}= \\
& \frac{1}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}} \\
& \left.A x_{\alpha_{4}}\right)+x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}\left(1-A x_{\alpha_{2}} x_{\alpha_{5}}\left(1-A x_{\alpha_{3}}\right)+x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{4}}\left(1-A x_{\alpha_{2}}\right)+x_{\alpha_{3}} x_{\alpha_{1}}\left(1-A x_{\alpha_{1}} x_{\alpha_{3}}\left(1-2 A^{2} x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}\right)\right.\right.
\end{aligned}
$$

$$
k_{\alpha_{1}}^{2}=k_{\alpha_{2}}^{2}=0
$$

Special Cases

Example

Let (F, R) be a formal group law in variables $x_{\alpha_{i}}, x_{\alpha_{j}}, i, j=1, \ldots, 5$, such that $x_{-\alpha_{i}}=\frac{x_{\alpha_{i}}}{A x_{\alpha_{i}}-1}$ for some $0 \neq A \in R$. Then

$$
\begin{aligned}
& k_{\alpha_{1}}^{3}=k_{\alpha_{2}}^{3}= \\
& \frac{1}{x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}} \\
& \left.A x_{\alpha_{4}}\right)+x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}\left(1-A x_{\alpha_{2}}\right)+x_{\alpha_{5}}\left(1-A x_{\alpha_{3}}\right)+x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{5}}\left(1-A x_{\alpha_{1}}\left(1-A x_{\alpha_{5}}\right)+A^{2} x_{\alpha_{1}} x_{\alpha_{3}} x_{\alpha_{5}}(1-\right. \\
& \left.x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}\right) \\
& k_{\alpha_{1}}^{2}=k_{\alpha_{2}}^{2}=0 \\
& k_{\alpha_{1}}^{1}=k_{\alpha_{2}}^{1}=-\frac{\left(1-A x_{\alpha_{5}}\right)\left(\left(1-A x_{\alpha_{4}}\right)\left(\left(1-A x_{\alpha_{3}}\right)\left(\left(1-A x_{\alpha_{2}}\right) x_{\alpha_{1}}+x_{\alpha_{2}}\right)+x_{\alpha_{3}}\right)+x_{\alpha_{4}}\right)+x_{\alpha_{5}}}{x_{\alpha_{1} x_{\alpha_{2}} x_{\alpha_{3}} x_{\alpha_{4}} x_{\alpha_{5}}}}
\end{aligned}
$$

In General

Lemma

Let $I_{2}(m)$ be the dihedral group of order m. Let α_{1} and α_{2} be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_{2}(m)$ is generated over Q_{F} modulo the following relations

In General

Lemma

Let $I_{2}(m)$ be the dihedral group of order m. Let α_{1} and α_{2} be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_{2}(m)$ is generated over Q_{F} modulo the following relations

In General

Lemma

Let $I_{2}(m)$ be the dihedral group of order m. Let α_{1} and α_{2} be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_{2}(m)$ is generated over Q_{F} modulo the following relations

In General

Lemma

Let $I_{2}(m)$ be the dihedral group of order m. Let α_{1} and α_{2} be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_{2}(m)$ is generated over Q_{F} modulo the following relations

- $X_{i}^{2}=K X_{i}$ for $i=1, \ldots, m$, where $K=\frac{1}{x_{i}}+\frac{1}{x_{-i}}$

In General

Lemma

Let $I_{2}(m)$ be the dihedral group of order m. Let α_{1} and α_{2} be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_{2}(m)$ is generated over Q_{F} modulo the following relations

- $X_{i}^{2}=K X_{i}$ for $i=1, \ldots, m$, where $K=\frac{1}{x_{i}}+\frac{1}{x_{-i}}$
- $\underbrace{X_{1} X_{2} \ldots X_{1}}_{\text {m-elements }}-\underbrace{X_{2} X_{1} \ldots X_{2}}_{\text {m-elements }}=\sum_{i=1}^{m-2} \kappa_{\alpha_{1}}^{i} \underbrace{X_{j} X_{k} \ldots X_{1}}_{i \text {-elements }}-\kappa_{\alpha_{2}}^{i} \underbrace{X_{k} X_{j} \ldots X_{2}}_{\text {i-elements }}$,

$$
\kappa_{\alpha_{1}}^{i}, \kappa_{\alpha_{2}}^{i} \in Q_{F}
$$

Here $j=1$ and $k=2$ when i is odd, $j=2$ and $k=1$ when i is even

In General

Lemma

Let $I_{2}(m)$ be the dihedral group of order m. Let α_{1} and α_{2} be the simple roots of the corresponding root system. Then the formal affine Demazure Algebra of $I_{2}(m)$ is generated over Q_{F} modulo the following relations

- $X_{i}^{2}=K X_{i}$ for $i=1, \ldots, m$, where $K=\frac{1}{x_{i}}+\frac{1}{x_{-i}}$
- $\underbrace{X_{1} X_{2} \ldots X_{1}}_{\text {m-elements }}-\underbrace{X_{2} X_{1} \ldots X_{2}}_{\text {m-elements }}=\sum_{i=1}^{m-2} \kappa_{\alpha_{1}}^{i} \underbrace{X_{j} X_{k} \ldots X_{1}}_{i \text {-elements }}-\kappa_{\alpha_{2}}^{i} \underbrace{X_{k} X_{j} \ldots X_{2}}_{i-\text { elements }}$,
$\kappa_{\alpha_{1}}^{i}, \kappa_{\alpha_{2}}^{i} \in Q_{F}$.
Here $j=1$ and $k=2$ when i is odd, $j=2$ and $k=1$ when i is even

In General

Theorem

Let $I_{2}(m)$ be the dihedral group of order m. Let $y_{a_{i}}=\frac{1}{x_{n}}, i=1,2$. We have an explicit formula for the coefficient $\kappa_{\alpha_{1}}^{(m-2)}$ from the previous lemma:
$\kappa_{\alpha_{1}}^{(m-2)}=y_{\alpha_{1}} y_{\alpha_{2}}+s_{\alpha_{1}}\left(y_{\alpha_{1}} y_{\alpha_{2}}\right)+\ldots+\underbrace{s_{\alpha_{1}} s_{\alpha_{2}} \ldots}_{m-2}\left(y_{\alpha_{1}} y_{\alpha_{2}}\right)-y_{\alpha_{2}} s_{\alpha_{1}}^{(m-2)}\left(y_{\alpha_{2}}\right)$.
$\kappa_{\alpha_{2}}^{(m-2)}$ is obtained from $\kappa_{\alpha_{1}}^{(m-2)}$ by switching α_{1} and α_{2}.

In General

Theorem

Let $I_{2}(m)$ be the dihedral group of order m. Let $y_{\alpha_{i}}=\frac{1}{\chi_{\alpha_{i}}}, i=1,2$. have an explicit formula for the coefficient $\kappa_{\alpha_{1}}^{(m-2)}$ from the previous lemma:
$\kappa_{\alpha_{1}}^{(m-2)}=y_{\alpha_{1}} y_{\alpha_{2}}+s_{\alpha_{1}}\left(y_{\alpha_{1}} y_{\alpha_{2}}\right)+\ldots+\underbrace{s_{\alpha_{1}} s_{\alpha_{2}} \ldots}_{m-2}\left(y_{\alpha_{1}} y_{\alpha_{2}}\right)-y_{\alpha_{2}} s_{\alpha_{1}}^{(m-2)}\left(y_{\alpha_{2}}\right)$. $\kappa_{\alpha_{2}}^{(m-2)}$ is obtained from $\kappa_{\alpha_{1}}^{(m-2)}$ by switching α_{1} and α_{2}.

In General

Theorem

Let $I_{2}(m)$ be the dihedral group of order m. Let $y_{\alpha_{i}}=\frac{1}{x_{\alpha_{i}}}, i=1,2$. We have an explicit formula for the coefficient $\kappa_{\alpha_{1}}^{(m-2)}$ from the previous lemma:
$\kappa_{\alpha_{1}}^{(m-2)}=y_{\alpha_{1}} y_{\alpha_{2}}+s_{\alpha_{1}}\left(y_{\alpha_{1}} y_{\alpha_{2}}\right)+\ldots+\underbrace{s_{\alpha_{1}} s_{\alpha_{2}} \ldots}_{m-2}\left(y_{\alpha_{1}} y_{\alpha_{2}}\right)-y_{\alpha_{2}} s_{\alpha_{1}}^{(m-2)}\left(y_{\alpha_{2}}\right)$.

In General

Theorem

Let $I_{2}(m)$ be the dihedral group of order m. Let $y_{\alpha_{i}}=\frac{1}{\chi_{\alpha_{i}}}, i=1,2$. We have an explicit formula for the coefficient $\kappa_{\alpha_{1}}^{(m-2)}$ from the previous lemma:
$\kappa_{\alpha_{1}}^{(m-2)}=y_{\alpha_{1}} y_{\alpha_{2}}+s_{\alpha_{1}}\left(y_{\alpha_{1}} y_{\alpha_{2}}\right)+\ldots+\underbrace{s_{\alpha_{1}} s_{\alpha_{2}} \ldots}_{m-2}\left(y_{\alpha_{1}} y_{\alpha_{2}}\right)-y_{\alpha_{2}} s_{\alpha_{1}}^{(m-2)}\left(y_{\alpha_{2}}\right)$.
$\kappa_{\alpha_{2}}^{(m-2)}$ is obtained from $\kappa_{\alpha_{1}}^{(m-2)}$ by switching α_{1} and α_{2}.

